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§1 Introduction and review of IA Probability

§1.1 Introduction

Statistics can be defined as the science of making informed decisions. The field comprises,
for example:

• the design of experiments and studies;

• visualisation of data;

• formal statistical inference (which is the focus of this course);

• communication of uncertainty and risk; and

• formal decision theory.

This course concerns itself with parametric inference. Let X1, . . . , Xn be i.i.d. (independ-
ent and identically distributed) random variables, where we assume that the distribution
of X1 belongs to some family with parameter θ ∈ Θ. For instance, let X1 ∼ Poisson(µ),
where θ = µ and Θ = (0, ∞). Another example is X1 ∼ N(µ, σ2), and θ = (µ, σ2) and
Θ = R × (0, ∞). We use the observed X = (X1, . . . , Xn) to make inferences about the
parameter θ:

1. we can estimate the value of θ using a point estimate written θ̂(X);

2. we can make an interval estimate of θ, written (θ̂1(X), θ̂2(X));

3. hypotheses about θ can be tested, for instance the hypothesis H0 : θ = 1, by
checking whether there is evidence in the data X against the hypothesis H0.

Remark 1. In general, we will assume that the family of distributions of the observations
Xi is known a priori, and the parameter θ is the only unknown. There will, however,
be some remarks later in the course where we can make weaker assumptions about the
family.

§1.2 Review of IA Probability

This subsection reviews material covered in the IA Probability course. Some keywords
are measure-theoretic, and are not defined.

Let Ω be the sample space of outcomes in an experiment. A measurable subset of Ω is
called an event, and we denote the set of events by F . A probability measure P : F → [0, 1]
satisfies the following properties.

1. P (∅) = 0;

2. P (Ω) = 1;
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3. P (
⋃∞

i=1 Ai) =
∑∞

i=1 P (Ai) if (Ai) is a sequence of disjoint events.

A random variable is a measurable function X : Ω → R. The distribution function
of a random variable X is the function FX(x) = P (X ≤ x). We say that a random
variable is discrete when it takes values in a countable set X ⊂ R. The probability mass
function of a discrete random variable is the function pX(x) = P (X = x). We say that
X has a continuous distribution if it has a probability density function fX(x) such that
P (x ∈ A) =

∫
A fX(x) dx for ‘nice’ sets A.

The expectation of a random variable X is defined as

E [X] =
{∑

x∈X xpX(x) if X discrete∫∞
−∞ xfX(x) dx if X continuous

If g : R → R, we define E [g(X)] by considering the fact that g(X) is also a random
variable. For instance, in the continuous case,

E [g(X)] =
∫ ∞

−∞
g(x)fX(x) dx

The variance of a random variable X is defined as E
[
(X − E [X])2].

We say that a set of random variables X1, . . . , Xn are independent if, for all x1, . . . , xn,
we have

P (X1 ≤ x1, . . . , Xn ≤ xn) = P (X1 ≤ x1) · · ·P (Xn ≤ xn)

If and only if X1, . . . , Xn have probability density (or mass) functions f1, . . . , fn, then
the joint probability density (respectively mass) function is

fX(x) =
n∏

i=1
fXi(xi)

If Y = max {X1, . . . , Xn} where the Xi are independent, then the distribution function
of Y is given by

P (Y ≤ y) = P (X1 ≤ y) · · ·P (Xn ≤ y)

The probability density function of Y (if it exists) is obtained by the differentiating the
above.

Under a linear transformation, the expectation and variance have certain properties. Let
a = (a1, . . . , an)T ∈ Rn be a constant in Rn.

E [a1X1 + · · · + anXn] = E
[
aT X

]
= aTE [X]

4



where E [X] is defined componentwise. Note that independence of Xi is not required for
linearity of the expectation to hold. Similarly,

Var
(
aT X

)
=
∑
i,j

aiaj Cov Xi, Xj = aT Var (X) a

where we define Cov X, Y ≡ E [(X − E [X])(Y − E [Y ])], and Var (X) is the variance-
covariance matrix with entries (Var (X))ij = Cov Xi, Xj . We can say that the variance
is bilinear.

§1.3 Standardised statistics

Suppose that X1, . . . , Xn are i.i.d. and E [X1] = µ, Var (X1) = σ2. We define

Sn =
∑

i

Xi; Xn = Sn

n

where Xn is called the sample mean. By linearity of expectation and bilinearity of
variance,

E
[
Xn

]
= µ; Var

(
Xn

)
= σ2

n

We further define

Zn = Sn − nµ

σ
√

n
=

√
n

Xn − µ

σ

which has the properties that

E
[
Zn

]
= 0; Var (Zn) = 1

§1.4 Moment generating functions

The moment generating function of a random variable X is the function MX(t) = E
[
etX

]
,

provided that this function exists for t in some neighbourhood of zero, This can be
thought of as the Laplace transform of the probability density function. Note that

E [Xn] = dn

dtn
MX(t)

∣∣∣∣
t=0

Under broad conditions, moment generating functions uniquely define a distribution
function of a random variable. In other words, the Laplace transform is invertible. They
are also useful for finding the distribution of sums of independent random variables. For
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instance, let X1, . . . , Xn be i.i.d. Poisson random variables with parameter µ. Then, the
moment generating function of Xi is

MX1(t) = E
[
etXi

]
=

∞∑
x=0

etxe−µ µx

x!
= e−µ

∞∑
x=0

(etµ)x

x!
= e−µeµet = e−µ(1−et)

Now,

MSn(t) = E
[
etSn

]
=

n∏
i=1

E
[
etXi

]
= e−nµ(1−et)

This defines a Poisson distribution with parameter nµ by inspection.

§1.5 Limit theorems

The weak law of large numbers states that for all ε > 0, P
(∣∣∣Xn − µ

∣∣∣ > ε
)

→ 0 as n → ∞.
Note that the event

∣∣∣Xn − µ
∣∣∣ > ε depends only on X1, . . . , Xn.

The strong law of large numbers states that P
(
Xn → µ

)
= 1. In this formulation, the

event depends on the whole sequence of random variables Xi, since the limit is inside
the probability calculation.

The central limit theorem states that Zn = Sn−nµ
σ

√
n

is approximately a N(0, 1) random
variable when n is large. More precisely, P (Zn ≤ z) → Φ(z) for all z ∈ R.

§1.6 Conditional probability

If X, Y are discrete random variables, we can define the conditional probability mass
function to be

pX|Y (x | y) = P (X = x, Y = y)
P (Y = y)

when P (Y = y) 6= 0. If X, Y are continuous, we define the joint probability density
function to be fX,Y (x, y) such that

P (X ≤ x, Y ≤ y) =
∫ x

−∞

∫ y

−∞
f(x′, y′) dy′ dx′

The conditional probability density function is

fX|Y (x | y) = fX,Y (x, y)∫∞
−∞ fX,Y (x, y) dx
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The denominator is sometimes referred to as the marginal probability density function
of Y , written fY (y). Now, we can define the conditional expectation by

E [X | Y ] =
{∑

x xpX|Y (x | Y ) if X discrete∫
x xfX|Y (x | Y ) dx if X continuous

The conditional expectation is itself a random variable, as it is a function of the random
variable Y . The conditional variance is defined similarly, and is a random variable. The
tower property is that

E [E [X | Y ]] = E [X]

The law of total variance is that

Var (X) = E [Var (X | Y )] + Var (E [X | Y ])

§1.7 Change of variables in two dimensions

Suppose that (x, y) 7→ (u, v) is a differentiable bijection from R2 to itself. Then, the
joint probability density function of U, V can be written as

fU,V (u, v) = fX,Y (x(u, v), y(u, v))|det J |

where J is the Jacobian matrix,

J = ∂(x, y)
∂(u, v)

=
(

∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

)

§1.8 Common distributions

X has the binomial distribution with parameters n, p if X represents the number of
successes in n independent Bernoulli trials with parameter p.

X has the multinomial distribution with parameters n; p1, . . . , pk if there are n independ-
ent trials with k types, where pj is the probability of type j in a single trial. Here, X
takes values in Nk, and Xj is the amount of trials with type j. Each Xj is marginally
binomially distributed.

X has the negative binomial distribution with parameters k, p if, in i.i.d. Bernoulli trials
with parameter p, the variable X is the time at which the kth success occurs. The
negative binomial with parameter k = 1 is the geometric distribution.

The Poisson distribution with parameter λ is the limit of the distribution Bin(n, λ/n) as
n → ∞.
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If Xi ∼ Γ(αi, λ) for i = 1, . . . , n with X1, . . . , Xn independent, then the distribution of
Sn is given by the product of the moment generating functions. By inspection,

MSn(t) =
(

λ

λ − t

)∑
i

αi

or ∞ if t ≥ λ. Hence the sum of these random variables is Sn ∼ Γ(
∑

i αi, λ), where
the shape parameter α is constructed from the sum of the shape parameters of the
original functions. We call λ the rate parameter, and λ−1 is called the scale parameter.
If X ∼ Γ(α, λ), then for all b > 0 we have bX ∼ Γ(x, λ/b). Special cases of the Γ
distribution include:

• Γ(1, λ) = Exp(λ);

• Γ(k/2, 1/2) = χ2
k with k degrees of freedom, which is the distribution of a sum of

k i.i.d. squared standard normal random variables.
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§2 Estimation

§2.1 Estimators

Suppose X1, . . . , Xn are i.i.d. observations with a p.d.f. (or p.m.f.) fX(x | θ), where θ is
an unknown parameter in some parameter space Θ. Let X = (X1, . . . , Xn).

Definition 2.1 (Estimator)
An estimator is a statistic, or a function of the data, written T (X) = θ̂, which
is used to approximate the true value of θ. This does not depend (explicitly) on θ.
The distribution of T (X) is called its sampling distribution.

Example 2.1
Let X1, . . . , Xn ∼ N(0, 1) be i.i.d. Let µ̂ = T (X) = Xn. The sampling distribution
is T (X) ∼ N

(
µ, 1

n

)
. Note that this sampling distribution in general depends on the

true parameter µ.

Definition 2.2 (Bias)
The bias of θ̂ is

bias
(
θ̂
)

= Eθ

[
θ̂
]

− θ

Note that θ̂ is a function only of X1, . . . , Xn, and the expectation operator Eθ as-
sumes that the true value of the parameter is θ.

Remark 2. In general, the bias is a function of the true parameter θ, even though it is
not explicit in the notation.

Definition 2.3 (Unbiased Estimator)
An estimator with zero bias for all θ is called an unbiased estimator.

Example 2.2
The estimator µ̂ in the above example is unbiased, since

Eµ [µ̂] = Eµ

[
Xn

]
= µ

for all µ ∈ R.
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Definition 2.4 (Mean Squared Error)
The mean squared error of θ is defined as

mse
(
θ̂
)

= Eθ

[(
θ̂ − θ

)2
]

Remark 3. Like the bias, the mean squared error is, in general, a function of the true
parameter θ.

§2.2 Bias-variance decomposition

The mean squared error can be written as

mse
(
θ̂
)

= Eθ

[(
θ̂ − Eθ

[
θ̂
]

+ Eθ

[
θ̂
]

− θ
)2
]

= Varθ

(
θ̂
)

+ bias2
(
θ̂
)

Note that both the variance and bias squared terms are positive. This implies a tradeoff
between bias and variance when minimising error.

Example 2.3
Let X ∼ Bin(n, θ) where n is known and θ is an unknown probability. Let TU = X/n.
This is the proportion of successes observed. This is an unbiased estimator, since
Eθ [TU ] = Eθ [X] /n = θ. The mean squared error for the estimator is then

Varθ (Tn) = Varθ

(
X

n

)
= Varθ (X)

n2 = θ(1 − θ)
n

Now, consider an alternative estimator which has some bias:

TB = X + 1
n + 2

= w
X

n︸︷︷︸
TU

+(1 − w)1
2

; w = n

n + 2

This interpolates between the estimator TU and the fixed estimator 1
2 . Here,

bias(TB) = Eθ [TB] − θ = n

n + 2
θ − 1

n + 2
θ

The bias is nonzero for all but one value of θ. Further,

Varθ (TB) = Varθ (X + 1)
(n + 2)2 = nθ(1 − θ)

(n + 2)2
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We can calculate

mse(TB) = (1 − w)2
(1

2
− θ

)2
+ w2 θ(1 − θ)

n︸ ︷︷ ︸
mse(TU )

There exists a range of θ such that TB has a lower mean squared error, and simil-
arly there exists a range such that TU has a lower error. This indicates that prior
judgement of the true value of θ can be used to determine which estimator is better.

It is not necessarily desirable that an estimator is unbiased.

Example 2.4
Suppose X ∼ Poisson(λ) and we wish to estimate θ = P (X = 0)2 = e−2λ. For some
estimator T (X) of θ to be unbiased, we need that

Eλ [T (X)] =
∞∑

x=0
T (x)λxe−λ

x!
= e−2λ

Hence,
∞∑

x=0
T (x)λx

x!
= e−λ

But e−λ has a known power series expansion, giving T (X) ≡ (−1)X for all X. This
is not a good estimator, for example because it often predicts negative numbers for
a positive quantity.

§2.3 Sufficiency

Definition 2.5 (Sufficiency)
A statistic T (X) is sufficient for θ if the conditional distribution of X given T (X)
does not depend on θ. Note that θ and T (X) may be vector-valued, and need not
have the same dimension.

Example 2.5
Let X1, . . . , Xn be i.i.d. Bernoulli random variables with parameter θ where θ ∈ [0, 1].
The mass function is

fX(x | θ) =
n∏

i=1
θxi(1 − θ)1−xi = θ

∑
xi(1 − θ)n−

∑
xi

11



Note that this dependent only on x via the statistic T (X) =
∑n

n=1 xi. Here,

fX|T =t(x | θ) = Pθ (X = x, T (X) = t)
Pθ (T (x) = t)

If ∑xi = t, we have

fX|T =t(x | θ) = θ
∑

xi(1 − θ)n−
∑

xi(n
t

)
θt(1 − θ)n−

∑
xi

= 1(n
t

)
Hence T (X) is sufficient for θ.

§2.4 Factorisation criterion

Theorem 2.1
T is sufficient for θ if and only if

fX(x | θ) = g(T (x), θ)h(x)

for suitable functions g, h.

Proof. This will be proven in the discrete case; the continuous case can be handled
analogously. Suppose that the factorisation criterion holds. Then, if T (x) = t,

fX|T =t(x | T = t) = Pθ (X = x, T (x) = t)
Pθ (T (x) = t)

= g(T (x), θ)h(x)∑
x′ : T (x′)=t g(T (x′), θ)h(x′)

= h(x)∑
x′ : T (x′)=t h(x′)

which does not depend on θ. By definition, T (X) is sufficient.

Conversely, suppose that T (X) is sufficient.

fX(x | θ) = Pθ (X = x)
= Pθ (X = x, T (X) = T (x))
= Pθ (X = x | T (X) = T (x))︸ ︷︷ ︸

h(x)

Pθ (T (X) = T (x))︸ ︷︷ ︸
g(T (X),θ)
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Example 2.6
Consider the above example with n Bernoulli random variables with mass function

fX(x | θ) = θ
∑

xi(1 − θ)n−
∑

xi

Let T (X) =
∑

xi, and then the above mass function is in the form of g(T (X), θ)
and we can set h(x) ≡ 1. Hence T (X) is sufficient.

Example 2.7
Let X1, . . . , Xn be i.i.d. from a uniform distribution on the interval [0, θ] for some
θ > 0. The mass function is

fX(x | θ) =
n∏

i=1

1
θ
1{xi ∈ [0, θ]} =

(1
θ

)n

1

{
min

i
xi ≥ 0

}
1

{
max

i
xi ≤ θ

}

Let T (X) = maxi Xi. Then

g(T (X), θ) =
(1

θ

)n

1

{
max

i
xi ≤ θ

}
; h(x) ≡ 1

{
min

i
xi ≥ 0

}
We can then conclude that T (X) is sufficient for θ.

§2.5 Minimal sufficiency

Sufficient statistics are not unique. For instance, any bijection applied to a sufficient
statistic is also sufficient. Further, T (X) = X is always sufficient. We instead seek
statistics that maximally compress and summarise the relevant data in X and that
discard extraneous data.

Definition 2.6 (Minimal Sufficiency)
A sufficient statistic T (X) for θ is minimal if it is a function of every other sufficient
statistic for θ. More precisely, if T ′(X) is sufficient, T ′(x) = T ′(y) =⇒ T (x) = T (y).

Remark 4. Any two minimal statistics S, T for the same θ are bijections of each other.
That is, T (x) = T (y) if and only if S(x) = S(y).

Theorem 2.2
Suppose that fX(x | θ)/fX(y | θ) is constant in θ if and only if T (x) = T (y). Then
T is minimal sufficient.
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Remark 5. This theorem essentially states the following. Let x
1∼ y if the above ratio

of probability density or mass functions is constant in θ. This is an equivalence relation.
Similarly, we can define x

2∼ y if T (x) = T (y). This is also an equivalence relation. The
hypothesis in the theorem is that the equivalence classes of 1∼ and 2∼ are equal. Further,
we may always construct a minimal sufficient statistic for any parameter since we can
use the construction 1∼ to create equivalence classes, and set T to be constant for all
such equivalence classes.

Proof. Let t ∈ Im T . Then let zt be a representative of the equivalence class
{x : T (x) = t}. Then

fX(x | θ) = fX(zT (x) | θ) fX(x | θ)
fX(zT (x) | θ)

By the hypothesis, the ratio on the right hand side does not depend on θ, so let
this ratio be h(x). Further, the other term depends only on T (x), so it may be
g(T (x), θ). Hence T is sufficient by the factorisation criterion.

To prove minimality, let S be any other sufficient statistic, and then by the factor-
isation criterion there exist gS and hS such that fX(x | θ) = gS(S(x), θ)hS(x). Now,
suppose S(x) = S(y) for some x, y. Then,

fX(x | θ)
fX(y | θ)

= gS(S(x), θ)hS(x)
gS(S(y), θ)hS(y)

= hS(x)
hS(y)

which is constant in θ. Hence, x
1∼ y. By the hypothesis, we have x

2∼ y, so
T (x) = T (y), which is the requirement for minimality.

Remark 6. Sometimes the range of X depends on θ (e.g. X1, . . . , Xn
iid∼ Unif([0, θ])). In

this case we can interpret “fX(x|θ)
fX(y|θ) constant in θ” to mean that fX(x | θ) = c(x, y)fX(y | θ)

for some function c which does not depend on θ.

Example 2.8
Let X1, . . . , Xn be normal with unknown µ, σ2.

fX(x | µ, σ2)
fX(y | µ, σ2)

=
(2πσ2)−n/2 exp

{
− 1

2σ2
∑

i(xi − µ)2
}

(2πσ2)−n/2 exp
{

− 1
2σ2

∑
i(yi − µ)2

}
= exp

{
− 1

2σ2

(∑
i

x2
i −

∑
i

y2
i

)
+ µ

σ2

(∑
i

xi −
∑

i

yi

)}

Hence, for minimality, this is constant in the parameters µ, σ2 if and only if ∑i x2
i =

14



∑
i y2

i and ∑i xi =
∑

i yi. Thus, a minimal sufficient statistic is
(∑

i x2
i ,
∑

i xi
)

is a
minimal sufficient statistic. A more common way of expressing the minimal sufficient
statistic is

S(x) =
(
Xn, Sxx

)
; Xn = 1

n

∑
i

xi; Sxx =
∑

i

(
Xi − Xn

)2

which is a bijection of the above minimal sufficient statistic so is also minimal suffi-
cient.

Remark 7. θ and a minimal statistic T need not have the same dimension.

Example 2.9
Consider X1, . . . , Xn

iid∼ N(µ, µ2). Here, there is a single parameter µ but the min-
imal sufficient statistic is still S(x) as defined above.

§2.6 Rao-Blackwell theorem

Previously, the notation Eθ and Pθ have been used to denote expectations and probabilit-
ies under the model where the observations are i.i.d. with p.d.f. or p.m.f. fX . From now,
we omit this subscript, as it will be implied for much of the remainder of the course.

Theorem 2.3
Let T be a sufficient statistic for θ, and define an estimator θ̃ with E

[
θ̃2
]

< ∞ for
all θ. Now we define another estimator

θ̂ = E
[
θ̃ | T (x)

]
Then, for all values of θ, we have

E
[(

θ̂ − θ
)2
]

≤ E
[(

θ̃ − θ
)2
]

In other words, the mean squared error of θ̂ is not greater than the mean squared
error of θ̃. Further, the inequality is strict unless θ̃ is a function of T .

Remark 8. Starting from any estimator θ̃, if we condition on the sufficient statistic T
we obtain a ‘better’ statistic θ̂. Note that T must be sufficient, otherwise θ̂ may be a
function of θ and thus not an estimator:

θ̂(X) = θ̂(T ) =
∫

θ̂(x) fX|T (x | T )︸ ︷︷ ︸
does not depend on θ as T is sufficient

dx

15



The message to take away from this theorem is that we can improve the mse of any
estimate θ̃ by taking a conditional expectation given T (x).

Proof. By the tower property of the expectation, we can find

E
[
θ̂
]

= E
[
E
[
θ̃ | T (x)

]]
= E

[
θ̃
]

Hence, bias
(
θ̂
)

= bias
(
θ̃
)
. By the conditional variance formula,

Var
(
θ̃
)

= E

Var
(
θ̃ | T

)
︸ ︷︷ ︸

≥0

+ Var
(
E
[
θ̃ | T

])
︸ ︷︷ ︸

Var(θ̂)

≥ Var
(
θ̂
)

∀ θ.

By the bias-variance decomposition, we know that mse
(
θ̃
)

≥ mse
(
θ̂
)
. The inequal-

ity is strict unless Var
(
θ̃ | T

)
= 0 almost surely. This requires that θ̃ is a function

of T .

Example 2.10
Let X1, . . . , Xn be i.i.d. Poisson random variables with parameter λ. Then let θ =
P (X1 = 0) = e−λ. Here,

fX(x | λ) = e−nλλ
∑

xi∏
xi!

=⇒ fX(x | θ) = θn(− log θ)
∑

xi∏
xi!

Using the factorisation criterion, we find

g(T (x), θ) = g
(∑

xi, θ
)

= θn(− log θ)
∑

xi ; h(x) = 1∏
xi!

so T (x) =
∑

xi is sufficient.

Note that ∑Xi has a Poisson distribution with parameter nλ.

Consider the estimator θ̃ = 1{X1 = 0}. This depends only on X1, hence it is a weak
estimator. However, it is unbiased, so when we apply the Rao-Blackwell theorem
we will construct an unbiased θ̂, which is precisely

θ̂ = E
[
θ̃ |
∑

Xi = t
]

= P
(
X1 = 0 |

∑
Xi = t

)
= P (X1 = 0,

∑
Xi = t)

P (
∑

Xi = t)

= P (X1 = 0)P (
∑n

i=2 Xi = t)
P (
∑n

i=1 Xi = t)
a

16



...

=
(

n − 1
n

)t

This may also be written

θ̂ =
(

1 − 1
n

)∑xi

which is an estimator with strictly lower mean squared error than θ̃ for all θ by
Rao-Blackwell and as θ̃ doesn’t depend solely upon T .

Note that θ̂ =
(
1 − 1

n

)nXn converges in the limit to e−Xn . By the strong law of
large numbers, Xn → E [X1] = λ almost surely, so we arrive at θ̂ → e−λ = θ almost
surely.

aWe know the distribution of
∑

Xi, so simply sub this pmf in.

Example 2.11
Let X1, . . . , Xn be i.i.d. uniform random variables in an interval [0, θ]. We wish to
estimate θ ≥ 0. We observed that T = max Xi is sufficient for θ.
Let θ̃ = 2X1. This is an unbiased estimator of θ. Then the Rao-Blackwellised
estimator θ̂ is

θ̂ = E
[
θ̃ | T = t

]
= 2E [X1 | max Xi = t]
= 2E [X1 | max Xi = t, X1 = max Xi]P (X1 = max Xi | max Xi = t)
+ 2E [X1 | max Xi = t, X1 6= max Xi]P (X1 6= max Xi | max Xi = t)

Since X1, . . . , Xn are i.i.d., the conditional probability P (X1 = max Xi | max Xi = t)
can be reduced to P (X1 = max Xi) = 1

n . The complementary event may be reduced
in an analogous way. The expectation E [X1 | max Xi = t, X1 = max Xi] can be
reduced to t.

θ̂ = 2t

n
+ 2(n − 1)

n
E
[
X1 | X1 < t,

nmax
i=2

Xi = t

]
= 2t

n
+ 2(n − 1)

n
E [X1 | X1 < t] a

= 2t

n
+ 2(n − 1)

n

t

2

= 2t

n
+ t(n − 1)

n
= n + 1

n
max

i
Xi

17



By the Rao-Blackwell theorem, the mean squared error of θ̂ is strictly better than
the mean squared error of θ̃. This is also an unbiased estimator.

aBy independence

§2.7 Maximum likelihood estimation

Let X1, . . . , Xn be i.i.d. random variables with mass or density function fX(x | θ).

Definition 2.7 (Likelihood Function)
For fixed observations x, the likelihood function L : Θ → R is given by

L(θ) = fX(x | θ) =
n∏

i=1
fXi(xi | θ)

Definition 2.8 (Log-Likelihood Function)
We will denote the log-likelihood by

ℓ(θ) = log L(θ) =
n∑

i=1
log fXi(xi | θ)

Definition 2.9
A maximum likelihood estimator is an estimator that maximises the likelihood
function L over Θ. Equivalently, the estimator maximises ℓ.

Example 2.12
Let X1, . . . , Xn be i.i.d. Bernoulli random variables with parameter p. The log-
likelihood function is

ℓ(p) =
n∑

i=1
[Xi log p + (1 − Xi) log(1 − p)] = log p

∑
Xi + log(1 − p)

(
n −

∑
Xi

)
The derivative is

ℓ′(p) =
∑

Xi

p
+ n −

∑
Xi

1 − p

which has a single stationary point at p = 1
n

∑
Xi = X. We have E [p̂] = p, so the

maximum likelihood estimator in this case is unbiased.

18



Example 2.13
Let X1, . . . , Xn be i.i.d. normal random variables with unknown mean µ and variance
σ2.

ℓ(µ, σ2) = −n

2
log(2π) − n

2
log σ2 − 1

2σ2

∑
(Xi − µ)2

This function is concave in µ and σ2, so there exists a unique maximiser. In partic-
ular, ℓ is maximised when ∂ℓ

∂µ = ∂ℓ
∂σ2 = 0.

∂ℓ

∂µ
= 1

σ2

∑
(Xi − µ)

This is zero if µ = X.
Further,

∂ℓ

∂σ2 = − n

2σ2 + 1
2σ4

∑
(Xi − µ)2 = − n

2σ2 + 1
2σ4

∑
(Xi − X)2

This is zero iff

σ2 = 1
n

∑
(Xi − X)2 = Sxx

n

Hence, the maximum likelihood estimator is
(
µ̂, σ̂2) =

(
Xn, 1

nSxx

)
.

We can show that µ̂ = X is unbiased.

We will later prove that

Sxx

σ2 = nσ̂2

σ2 ∼ χ2
n−1

Hence

E
[
σ̂2
]

= σ2

n
E
[
χ2

n−1

]
= σ2 n − 1

n
6= σ2

This is therefore a biased estimator, but the bias converges to zero as n → ∞ ∀ σ2 :
σ̂2 is asymptotically unbiased.

Example 2.14
Let X1, . . . , Xn be i.i.d. uniform random variables on [0, θ]. Here, we derived the
unbiased estimator θ̂ = n+1

n max Xi.
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The likelihood is given by

L(θ) = 1
θn
1{max Xi ≤ θ}

This function is maximised at θ̂mle = max Xi.

By comparison to the θ̂ derived from the Rao-Blackwell process, θ̂mle is biased but
asymptotically unbiased. In particular,

E
[
θ̂mle

]
= n

n + 1
E
[
θ̂
]

= n

n + 1
θ

Remark 9. 1. If T is a sufficient statistic for θ, then the maximum likelihood estimator
is a function of T (X). Indeed, since X and T (X) are fixed, the maximiser of
L(θ) = g(T (X), θ)h(X) depends on X only through T . This is good as otherwise
we could use Rao-Blackwell to get a better estimator in terms of the mse.

2. If φ = H(θ) for a bijection H, then if θ̂ is the maximum likelihood estimator for θ,
we have that H(θ̂) is the maximum likelihood estimator for φ.

3. Asymptotic Normality: Under some regularity conditions, as n → ∞ the statistic√
n(θ̂−θ) is approximately normal with mean zero and covariance matrix Σ. More

precisely, for ‘nice’ sets A and ‘regular’ values of θ, we have

P
(√

n
(
θ̂(n) − θ

)
∈ A

)
n→∞→ P (Z ∈ A) ; Z ∼ N(0, Σ)

We say that the maximum likelihood estimator is asymptotically normal. The
limiting covariance matrix Σ is a known function of ℓ, which will not be defined in
this course. There is a theorem (Cramer-Rao) which says in some sense, Σ is the
smallest variance that any estimator can achieve asymptotically.

4. For practical purposes, this estimator can often be found numerically by maxim-
ising ℓ or L.
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§3 Inference

§3.1 Confidence Intervals

Question
A vaccine has 76% efficacy in a 3-month period, with a 95% confidence interval
(59%, 86%). What does this mean?

Definition 3.1
A 100γ% confidence interval for a parameter θ is a random interval (A(X), B(X))
such that P (A(X) ≤ θ ≤ B(X)) = γ for all θ ∈ Θ. Note that the parameter θ is
assumed to be fixed for the event {A(X) ≤ θ ≤ B(X)}, and the confidence interval
holds uniformly over θ.

Answer
There exist some fixed true parameter θ. Suppose that an experiment is repeated
many times. On average, 100γ% of the time, the random interval (A(X), B(X)) will
contain the true parameter θ. This is the frequentist interpretation of the confidence
interval.

A misleading interpretation is as follows. Given that a single value of X = x is
observed, there is a probability γ that θ ∈ (A(x), B(x)). This is wrong, as will be
demonstrated later.

Example 3.1
Let X1, . . . , Xn ∼ N (θ, 1) be iid. We will find the 95% confidence interval for θ. We
have

X = 1
n

n∑
i=1

Xi ∼ N

(
θ,

1
n

)
; Z =

√
n
(
X − θ

)
∼ N (0, 1)

Z has this distribution ∀ θ.

Let a, b be numbers such that Φ(b) − Φ(a) = 0.95. Then

P
(
a ≤

√
n
(
X − θ

)
≤ b

)
= 0.95 =⇒ P

(
X − b√

n
≤ θ ≤ X − a√

n

)
= 0.95

Hence,
(
X − b√

n
, X − a√

n

)
is a 95% confidence interval for θ.
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Typically, we wish to centre the interval around some estimator θ̂ such that its range
is minimised for a given γ. In this case, we want to set −a = b = z0.025 ≈ 1.96,
where zα = Φ−1(1 − α). Hence, the confidence interval is

(
X ± 1.96√

n

)
.

Remark 10. In general, to find a confidence interval:

1. Find a quantity R(X, θ) where the distribution Pθ does not depend on θ. This is
known as a pivot. In the example above, R(X, θ) =

√
n
(
X − θ

)
.

2. Consider P (c1 ≤ R(X, θ) ≤ c2) = γ. Given some desired level of confidence γ, find
c1 and c2 using the distribution function of the pivot, typically a N (0, 1) or χ2

ρ

distribution.

3. Rearrange such that P (A(X) ≤ θ ≤ B(X)) = γ, then (A(X), B(X)) is the confid-
ence interval as required.

Proposition 3.1
Let T be a monotonically increasing function, and let (A(X), B(X)) be a 100γ%
confidence interval for θ. Then (T (A(X)), T (B(X))) is a 100γ% confidence interval
for T (θ).

Remark 11. If θ is a vector, we can consider confidence sets instead of confidence intervals.
A confidence set is a set A(X) such that P (θ ∈ A(X)) = γ.

Example 3.2
Let X1, . . . , Xn be i.i.d. normal random variables with zero mean and unknown
variance σ2. We will find a 95% confidence interval for σ2. Note that X1

σ ∼ N(0, 1)
is a valid pivot, but it considers only one data point. We will instead consider

R(X, σ2) =
∑

i

X2
i

σ2 ∼ χ2
n

Now, we can define c1 = F −1
χ2

n
(0.025) and c2 = F −1

χ2
n

(0.975), giving

P
(

c1 ≤
n∑

i=1

X2
i

σ2 ≤ c2

)
= 0.95

Rearranging, we have

P
(∑

X2
i

c2
≤ σ2 ≤

∑
X2

i

c1

)
= 0.95
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Hence, the interval∑n
i=1 X2

i

(
1
c2

, 1
c1

)
is a 95% confidence interval for σ2. Additionally,

it is immediate from the previous proposition that the interval
√∑n

i=1 X2
i

(
1√
c2

, 1√
c1

)
is a 95% confidence interval for σ.

Example 3.3
Let X1, . . . , Xn be i.i.d. Bernoulli random variables with parameter p. Suppose n is
large. We will find an approximate 95% confidence interval for p. The maximum
likelihood estimator is

p̂ = X = 1
n

n∑
i=1

Xi

By the central limit theorem, p̂ is asymptotically distributed according to
N
(
p, p(1−p)

n

)
. Hence,

√
n

p̂ − p√
p(1 − p)

has approximately a standard normal distribution. We have

P
(

−z0.025 ≤
√

n
p̂ − p√
p(1 − p)

≤ z0.025

)
≈ 0.95

Instead of directly rearranging the inequalities, we will make an approximation for
the denominator of the central term, letting

√
p(1 − p) 7→

√
p̂(1 − p̂). When n is

large, this approximation becomes more accurate.

P
(

−z0.025 ≤
√

n
p̂ − p√
p̂(1 − p̂)

≤ z0.025

)
≈ 0.95

This is much easier to rearrange, leading to

P
(

p̂ − z0.025

√
p̂(1 − p̂)√

n
≤ p ≤ p̂ + z0.025

√
p̂(1 − p̂)√

n

)
≈ 0.95

This gives the approximate 95% confidence interval as required.

Remark 12. Note that the size of the confidence interval is maximised at p̂ = 1
2 and

z0.025 ≈ 1.96 so a conservative 95% confidence interval would be
(
p̂ ± 1.961

2
1√
n

)
; it may

be wider than necessary but holds for all values of p.
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§3.2 Interpreting the confidence interval

Example 3.4
Let X1, X2 be i.i.d. uniform random variables in

(
θ − 1

2 , θ + 1
2

)
. We wish to estimate

the value of θ with a 50% confidence interval. Observe that

P (θ ∈ (min Xi, max Xi)) = P (X1 ≤ θ ≤ X2) + P (X2 ≤ θ ≤ X1) = 1
2

Hence, (min X1, max Xi) is a 50% confidence interval for θ. The frequentist inter-
pretation is exactly correct; 50% of the time, θ will lie between X1 and X2. However,
suppose that |X1 − X2| > 1

2 . Then we know that θ ∈ (min Xi, max Xi). Suppose
X1 = 0.1, X2 = 0.9, then it is not sensible to say that there is a 50% chance that
θ ∈ [0.1, 0.9].
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§4 Bayesian analysis

§4.1 Introduction

Frequentist analysis considers the value θ to be fixed, and then we can make inferential
statements about θ in the context of repeated experiments on a random variable X.
Bayesian analysis is an alternative to frequentist analysis, where θ is itself treated as
a random variable taking values in the parameter space Θ. We say that the prior
distribution π(θ) is a distribution representing the beliefs of the investigator about θ
before observing data. The data X has a p.d.f. or p.m.f. conditional on θ given by fX( · |
θ). Having observed X, we can combine this information with the prior distribution to
form the posterior distribution π(θ | X), which is the conditional distribution of θ given
X. This contains updated information about the value of θ.

By Bayes’ rule,

π(θ | x) = π(θ)fX(x | θ)
fX(x)

where fX(x) is the marginal distribution of X, defined by

fX(x) =
{∫

Θ fX(x | θ)π(θ) dθ θ continuous∑
Θ fX(x | θ)π(θ) θ discrete

More simply,

π(θ | X) ∝ π(θ) · fX(X | θ)

The proportionality here is with respect to θ. So the posterior is proportional to the
prior multiplied by the likelihood. It is often easy to recognise that the right hand side of
this expression is in some family of distributions, such as N or Γ, up to some normalising
constant.

Remark 13. By the factorisation criterion, if T is a sufficient statistic for θ, the posterior
π(θ | x) depends on X only through T . More precisely,

π(θ | X) ∝ π(θ)g(T (X), θ)h(X) ∝ π(θ)g(T (C), θ)

Example 4.1 (Clear Prior)
Consider a patient who we will test for the presence of a disease, where we have no
information about the health or lifestyle of the patient. Let θ take the value 1 if
the patient is infected and 0 otherwise. We have a random variable X which takes
the value 1 if a given test returns a positive result and 0 if the test is negative. We
know the sensitivity of the test fX(X = 1 | θ = 1), and the specificity of the test
fX(X = 0 | θ = 0). This fully specifies the likelihood function.

25



We now must choose a prior distribution. For example, let π(θ = 1) be the estimated
proportion of the general population that have the given disease. The posterior is
the probability of an infection given the test result.

π(θ = 1 | X = 1) = π(θ = 1)fX(X = 1 | θ = 1)
π(θ = 1)fX(X = 1 | θ = 1) + π(θ = 0)fX(X = 1 | θ = 0)

Even with a positive test result, the posterior distribution may still yield a low
probability for θ, which may happen if π(θ = 1) � π(θ = 0).

Example 4.2
Let θ be the mortality rate of a particular surgery, which will take values in [0, 1]. In
the first ten operations, we observed that none of the patients died. We will model
Xi ∼ B(10, θ) and observe Xi = 0.

We must choose a prior. Suppose that we have data from other hospitals that
suggests that the mortality for the surgery ranges from 3% to 20%, with an average
of 10%. We can choose the prior to be the beta distribution, π(θ) ∼ Beta(a, b), since
the value of θ should range between zero and one. Let a = 3 and b = 27, which will
give E [θ] = 0.1 and P (0.03 < θ < 0.2) ≈ 0.9. In this case, the posterior is

π(θ | X) ∝ π(θ)fX(X | θ)

∝ θa−1(1 − θ)b−1θ
∑

xi(1 − θ)10−
∑

xi

= θ
∑

xi+a−1(1 − θ)b−10−
∑

xi−1

This is again a beta distribution with parameters ∑xi + a and 10 −
∑

xi + b. The
normalising constant does not need to be explicitly calculated since the form of the
distribution can be recognised.

With the above data, we obtain π(θ |
∑

xi = 0) ∼ Beta(3, 37). This posterior has
a smaller variance than the prior, and a smaller expectation due to observing no
deaths.

Note. Here the prior and posterior are in the same family of distributions. This is know
as conjugacy.

§4.2 Inference from the posterior

The posterior distribution π(θ | x) represents information about θ after having observed
some data X. This can be used to make decisions under uncertainty.

1. We first choose some decision δ ∈ ∆. For instance, in the first example, a decision
could be to ask the patient to isolate from others to reduce transmission.
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2. We define a loss function L(θ, δ), which defines what loss is incurred by making
decision δ given the true value of θ. In the above example, L(θ = 1, δ = 1) is the
loss incurred by asking the patient to isolate given that they have the disease.

3. We can now choose the decision δ that minimises∫
Θ

L(θ, δ)π(θ | x) dθ

which is the posterior expectation of the loss.

This method maximises over your preferences if they can be represented using a utility
function, see Von Neumann - Morgenstern utility theorem.

§4.3 Point estimation

We can use Bayesian analysis to represent an estimate for the value of θ as a decision,
where the decision is a “best guess” for the true parameter.

Definition 4.1 (Bayes estimator)
The Bayes estimator θ̂(B) minimises

h(δ) =
∫

Θ
L(θ, δ)π(θ | x) dθ

Example 4.3
Suppose the loss function is quadratic, given by L(θ, δ) = (θ − δ)2. Here,

h(δ) =
∫

Θ
(θ − δ)2π(θ | x) dθ

Thus, h′(δ) = 0 if∫
Θ

(θ − δ)π(θ | x) dθ = 0 ⇐⇒ δ =
∫

Θ
θπ(θ | x) dx

Under the quadratic loss function, θ̂(B) can be described as the expectation of θ
under the posterior distribution.

Example 4.4
Consider the absolute error loss, given by L(θ, δ) = |θ − δ|. In this case we have

h(δ) =
∫

Θ
|θ − δ|π(θ | x) dθ =

∫ δ

−∞
−(θ − δ)π(θ | x) dθ +

∫ ∞

δ
(θ − δ)π(θ | x) dθ
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We can differentiate, using the fundamental theorem of calculus, to find

h′(δ) =
∫ δ

−∞
π(θ | x) dθ −

∫ ∞

δ
π(θ | x) dθ

This is zero if and only if∫ δ

−∞
π(θ | x) dθ =

∫ ∞

δ
π(θ | x) dθ

This yields the median of the posterior distribution.

§4.4 Credible intervals

Definition 4.2 (Credible Interval)
A 100γ% credible interval (A(x), B(x)) satisfies

π(A(x) ≤ θ ≤ B(x) | x) = γ

Here x is fixed at the observed value.

Remark 14. Unlike confidence intervals, credible intervals can be interpreted condition-
ally on the data. For example, we could say that given a specific observation x, we are
100γ% certain that θ lies within (A(x), B(x)). This credible interval is also dependent
on the choice of prior distribution.

Note. If T is a sufficient statistic, π(θ | x) only depends on x through T (x).

π(θ | x) ∝ π(θ)fX(x | θ)
= π(θ)g(T (x), θ)h(x)
∝ π(θ)g(T (x), θ).

I.e. any two data sets with the same sufficient statistic will have the same posterior.

Example 4.5
Let X1, . . . , Xn ∼ N (µ, 1) iid. Our prior is π(µ) ∼ N (0, 1

τ2 ).

π(µ | x) ∝ fX(x | µ)π(µ)

∝ exp
[
−1

2

n∑
i=1

(xi − µ)2
]

exp
[
−µ2τ2

2

]
a

∝ exp
[
−1

2
(n + τ2)

(
µ −

∑
xi

n + τ2

)]
.
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We recognise this as a N
(∑

xi

n+τ2 , 1
n+τ2

)
distribution. The Bayes estimator µ̂(B) =∑

xi

n+τ2 for both quadratic and absolute error loss. Whereas µ̂(mle) =
∑

xi

n .

A 95% credible interval is

(µ̂(B) − 1.96√
n + τ2

, µ̂(B) + 1.96√
n + τ2

).

This is close to a 95% confidence interval when n >> τ2.
aWe have omitted constants independent of µ.

Example 4.6
Let X1, . . . , Xn ∼ Poi(λ) iid. Our prior is π(λ) ∼ Exp(1), i.e. π(λ) = e−λ where
λ > 0. So for λ > 0,

π(λ | x) ∝ fX(x | λ)π(λ)

∝ e−nλλ
∑

xi∏
i xi!

e−λ

∝ e−(n+1)λλ
∑

xi .

This is a Gamma(
∑

xi + 1, n + 1) distribution.

The Bayes estimator for quadratic loss is the posterior mean λ̂(B) =
∑

xi+1
n+1 →∑

xi

n = λ̂(mle) as n → ∞. Under the absolute error loss the Bayes estimator λ̂(B) is

∫ λ̂(B)

0

(n + 1)
∑

xi−1

(
∑

xi)!
λ
∑

xie−(n+1)λ dλ = 1
2

.
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§5 Hypothesis testing

§5.1 Hypotheses

Definition 5.1 (Hypothesis)
A hypothesis is an assumption about the distribution of the data X.

Scientific questions are often phrased as a decision between two hypotheses.

Definition 5.2 (Null Hypothesis)
The null hypothesis H0 is usually a basic hypothesis, often representing the
simplest possible distribution of the data.

Definition 5.3 (Alternative Hypothesis)
The alternative hypothesis H1 is the alternative, if H0 were found to be false.

Example 5.1
Let X = (X1, . . . , Xn) be i.i.d. Bernoulli random variables with parameter θ. We
could take, for example, H0 : θ = 1

2 and H1 : θ = 3
4 . Alternatively, we could take

H0 : θ = 1
2 and H1 : θ 6= 1

2 .

Example 5.2
Suppose X1, . . . , Xn takes values in {0} ∪ N. We can take H0 : Xi

iid∼ Poi(λ) for
some λ > 0, and H1 : Xi

iid∼ f1 for some other distribution f1. This is known as a
goodness of fit test, which checks how well the model used for the data fits.

Example 5.3
Say X has pdf f(· | θ) with θ ∈ Θ. We could say H0 : θ ∈ A ⊂ Θ and H1 : θ /∈ A.

Definition 5.4
A simple hypothesis is a hypothesis which fully specifies the p.d.f. or p.m.f. of the
data. A hypothesis that is not simple is called composite.

30



Example 5.4
In the first example above, H0 : θ = 1

2 is simple, and H1 : θ 6= 1
2 is composite. In the

second example, H0 : Xi
iid∼ Poi(λ) is composite since λ was not fixed. In the last

example, H0 is simple only if |A| = 1.

§5.2 Testing hypotheses

Definition 5.5
A test of the null hypothesis H0 is defined by a critical region C ⊆ X . When
X ∈ C, we reject the null hypothesis. This is a positive result. When X 6∈ C
we fail to reject the null hypothesis, or find not sufficient evidence against the null
hypothesis. This is the negative result.

Definition 5.6 (Type Errors)
A type I error, or a false positive, is the error made by rejecting the null hypothesis
when it is true. A type II error, or a false negative, is the error made by failing to
reject the null hypothesis when it is false. When H0, H1 are simple, we define

α = PH0 (H0 is rejected) = PH0 (X ∈ C)
β = PH1 (H0 is not rejected) = PH1 (X 6∈ C)

The size of a test is α, which is the probability of a type I error. The power of a
test is 1 − β, which is the probability of not finding a type II error.

Remark 15. There is typically a tradeoff between α and β. Often, statisticians will
choose an ‘acceptable’ value for the probability of type I errors α, and then maximise
the power with respect to this fixed α. Computing the size of a test is typically simpler
since it does not depend on H1.

§5.3 Neyman-Pearson lemma

Let H0 and H1 be simple, and let X have a p.d.f. or p.m.f. fi under Hi.

Definition 5.7 (Likelihood Ratio Statistic)
The likelihood ratio statistic is defined by

Λx(H0; H1) = f1(x)
f0(x)
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Definition 5.8 (Likelihood Ratio Test)
The likelihood ratio test is a test that rejects H0 when Λx exceeds a set value k,
or more formally, C = {x : Λx(H0; H1) > k}.

Lemma 5.1 (Neyman-Pearson)
Suppose that f0, f1 are nonzero on the same set, and suppose that there exists k > 0
such that the likelihood ratio test with critical region C = {x : Λx(H0; H1) > k} has
size α. Then out of all tests of size upper bounded by α, this test has the largest
power.

Remark 16. A likelihood ratio test with size α does not always exist for any given α.
However, in general we can find a randomised likelihood ratio test with arbitrary size α.
This is a test where, for some values of X, we reject the null hypothesis; for some values,
we fail to reject the null hypothesis; and for some values we reject the null hypothesis
with a random chance of rejecting the null hypothesis.

Proof. Let C be the complement of C in X . Then, the likelihood ratio test has

α = PH0(X ∈ C) =
∫

C
f0(x) dx

β = PH1(X /∈ C) =
∫

C
f1(x) dx

Let C⋆ be a critical region for a different test, with type I and II error probabilities
α⋆, β⋆. Here,

α⋆ =
∫

C⋆
f0(x) dx ; β⋆ =

∫
C⋆

f1(x) dx

Suppose α⋆ ≤ α. Then, we will show β ≤ β⋆.

β − β⋆ =
∫

C
f1(x) dx −

∫
C⋆

f1(x) dx

By cancelling the integrals on the intersection, and using the definition of C,

β − β⋆ =
∫

C∩C⋆
f1(x) dx −

∫
C⋆∩C

f1(x) dx

=
∫

C∩C⋆

f1(x)
f0(x)︸ ︷︷ ︸

≤k on C

f0(x) dx −
∫

C⋆∩C

f1(x)
f0(x)︸ ︷︷ ︸

≥k on C

f0(x) dx

≤ k

[∫
C∩C⋆

f0(x) dx −
∫

C
⋆∩C

f0(x) dx

]
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= k

[∫
C∩C⋆

f0(x) dx +
∫

C∩C⋆
f0(x) dx −

∫
C∩C⋆

f0(x) dx −
∫

C
⋆∩C

f0(x) dx

]
= k

[∫
C⋆

f0(x) dx −
∫

C
f0(x) dx

]
= k[α⋆ − α]
≤ 0

Example 5.5
Let X1, . . . , Xn ∼ N(µ, σ2

0) be i.i.d., where σ2
0 is known and µ is an unknown. We

wish to find the most powerful test of fixed size α for the hypotheses H0 : µ = µ0
and H1 : µ = µ1 > µ0. The likelihood ratio is

Λx(H0; H1) =
(2πσ2

0)−n/2 exp
{

−1
2σ2

0

∑
(xi − µ1)2

}
(2πσ2

0)−n/2 exp
{

−1
2σ2

0

∑
(xi − µ0)2

}

= exp


µ1 − µ0

σ2
0︸ ︷︷ ︸

≥0

nX + n(µ2
0 − µ2

1)
2σ2

0


which depends only on X, and is monotonically increasing with respect to the sample
mean X. Therefore, this is also monotonically increasing with respect to the statistic

Z =
√

n
X − µ0

σ0

Thus, Λx > k if and only if Z > k′ for some k′. Hence, the likelihood ratio test has
critical region {x : Z(x) > k′} for some k′. It thus suffices to find a critical region of
Z with size α in order to construct the most powerful test of this size. Under H0,
Z ∼ N(0, 1). Hence, the critical region is given by k′ = Φ−1(1 − α). This is known
as a Z-test, since we are using the Z statistic to define the critical region.

§5.4 p-values

Definition 5.9
Let C be a critical region of the form {x : T (x) > k} for some test statistic T . Let
x⋆ denote the observed data. Then, the p-value is

PH0 (T (X) > T (x⋆))

Typically, when reporting the results of a test, we describe the conclusion of the test as

33



well as the p-value.

Example 5.6
In Example 5.5, suppose µ0 = 5, µ1 = 6, α = 0.05, and x⋆ = (5.1, 5.5, 4.9, 5.3). Here,
x⋆ = 5.2 and z⋆ = 0.4. The likelihood ratio test has critical region{

x : Z(x) > Φ−1(0.95) ≈ 1.645
}

The conclusion of the test here is to not reject H0. The p-value is 1 − Φ(z⋆) ≈ 0.35.

Proposition 5.1
Under the null hypothesis H0, the p-value is a uniform random variable in [0, 1].

p is a function of x⋆ and so if x⋆ has the H0 distribution then p(x⋆) is uniform.

Proof. Let F be the distribution of the test statistic T , which we will assume for
this proof is continuous. Then ∀ u ∈ [0, 1],

PH0 (p < u) = PH0 (1 − F (T ) < u)
= PH0 (F (T ) > 1 − u)

= PH0

(
T > F −1(1 − u)

)
a

= 1 − F (F −1(1 − u)) = u

Thus p ∼ Unif(0, 1).
aF a bijection.

§5.5 Composite hypotheses

Let X ∼ fX( · | θ) where θ ∈ Θ. Let H0 = θ ∈ Θ0 ⊂ Θ and H1 = θ ∈ Θ1 ⊂ Θ. The
probabilities of type I and type II error are now dependent on the precise value of θ,
rather than simply on which hypothesis is taken.

Definition 5.10 (Power Function)
The power function for a test C is

W (θ) = Pθ (X ∈ C) .

This is the probability of rejecting H0 given the true parameter is θ.
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Definition 5.11 (Size)
The size of a test C is the worst case Type I error probability,

α = sup
θ∈Θ0

W (θ)

Definition 5.12 (Uniformly Most Powerful)
A test is uniformly most powerful (UMP) of size α if, for any test C⋆ with power
function W ⋆ and size upper bounded by α, for all θ ∈ Θ1 we have W (θ) ≥ W ⋆(θ).

Note. Such tests need not exist. In simple models, many likelihood ratio tests are
uniformly most powerful.

Example 5.7 (One-sided Test for Normal Location)
Let X1, . . . , Xn ∼ N(µ, σ2

0) be i.i.d. where σ2
0 is known and µ is unknown. Let

H0 : µ ≤ µ0 and H1 : µ > µ0 for some fixed µ0.

We claim that the simple hypothesis test given by H ′
0 : µ = µ0 and H ′

1 : µ =
µ1 > µ0 is uniformly most powerful for H0 and H1. The LRT was C ={

x : z =
√

n x̄−µ0
σ0

> zα

}
The power function is

W (µ) = Pµ

(√
n(X − µ0)

σ0
> zα

)

= Pµ

(√
n(X − µ)

σ0
> zα +

√
n(µ0 − µ)

σ0

)
a

√
n(X−µ)

σ0
∼ N (0, 1) under Pµ.

= 1 − Φ
(

zα +
√

n
µ0 − µ

σ0

)
W (µ) is monotone increasing in µ, so the size is supµ∈Θ0 W (µ) = W (µ0) = α.

It remains to show that if C⋆ is another test of size ≤ α with power function W ⋆

then W (µ1) ≥ W ⋆(µ1) for all µ1 > µ0.
First, observe that the critical region depends only on µ0, and not on µ1. In partic-
ular, for any µ1 > µ0, we have that the critical region C is the likelihood ratio test
for the simple hypothesis test H ′

0 : µ = µ0 and H ′
1 : µ = µ1. Any test C⋆ of H0 vs
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H1 of size ≤ α can also be seen as a test of H ′
0 vs H ′

1 with size ≤ α.

W ⋆(µ0) ≤ sup
µ<µ0

W ⋆(µ) ≤ α

By the Neyman-Pearson lemma, C has power no smaller than C⋆ for H ′
0 against

H ′
1:

W (µ1) ≥ W ⋆(µ1)

Since this is true for all µ1 > µ0, the result holds, and the test C satisfies the
property for being uniformly most powerful.

aAdding
√

n(µ0−µ)
σ0

to both sides.

§5.6 Generalised likelihood ratio test

Definition 5.13 (Generalised Likelihood Ratio)
Suppose we have hypotheses, H0, H1 The generalised likelihood ratio is given
by

Λx(H0; H1) =
supθ∈Θ1 fX(x | θ)
supθ∈Θ0 fX(x | θ)

Larger values of Λx indicate larger departures from H0.

The generalised likelihood ratio test rejects the null hypothesis when Λx is
sufficiently large.

Example 5.8 (Two-sided Normal Mean Test)
Let X1, . . . , Xn ∼ N(µ, σ2

0) be i.i.d. where σ2
0 is known and µ is unknown. Let

Θ0 = {µ0} and Θ1 = R \ {µ0} for some fixed µ0. In this model, the generalised
likelihood ratio is

Λx(H0; H1) =
(2πσ2

0)−n/2 exp
{

−1
2σ2

0
Σn

i=1(xi − X)2
}

(2πσ2
0)−n/2 exp

{
−1
2σ2

0
Σn

i=1(xi − µ0)2
}

2 log Λx = n

σ2
0

(X − µ0)2

Under H0,
√

nX−µ0
σ0

∼ N(0, 1). Hence, 2 log Λx ∼ χ2
1. Therefore, the critical region
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of this generalised likelihood ratio test is

C =
{

x : n

σ2
0

(X − µ0)2 > χ2
1(α)

}
=
{

x :
∣∣∣∣√n

x̄ − µ0
σ0

∣∣∣∣ > zα/2 = Φ−1
(

1 − α

2

)}
where χ2

1(α) is the upper α point of χ2
1. This is called a two-sided test since there

are two tails on the critical region, plotting with respect to
√

nX−µ0
σ0

.

Note. In general, we can approximate the distribution of 2 log Λx with a χ2 distribution
when n is large.

§5.7 Wilks’ theorem

Definition 5.14 (Dimension)
The dimension of a hypothesis H0 : θ ∈ Θ0 is the number of ‘free parameters’ in
Θ0.

Example 5.9
If Θ0 =

{
θ ∈ Rk : θ1 = · · · = θp = 0

}
, then the dimension of H0 is k − p.

Example 5.10
Let A ∈ Rp×k be a p × k matrix with linearly independent rows. Let b ∈ Rp for
p < k, then we define Θ0 =

{
θ ∈ Rk : Aθ = b

}
. Then the dimension of θ is k − p.

Example 5.11
Θ0 =

{
θ ∈ Rk : Θi = fi(φ), φ ∈ Rp

}
. Here φ are the free parameters; fi need not be

linear. Under regularity conditions, dim Θ0 = p.

Definition 5.15 (Nested Hypotheses)
Nested hypotheses are hypotheses of the form H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1, where
Θ0 ⊆ Θ1.

Theorem 5.1 (Wilks’ Theorem)
Suppose we have nested hypothesis and dim Θ1 −dim Θ0 = p. Let X = (X1, . . . , Xn)
be i.i.d. random variables under fx( · | θ). Then, under some regularity conditions,
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as n → ∞ we have under H0

2 log Λx ∼ χ2
p

More precisely, for any θ ∈ Θ0 and any ℓ ∈ R+,

lim
n→∞

Pθ (2 log Λx ≤ ℓ) = P (Ξ ≤ ℓ) ; Ξ ∼ χ2
p

Proof. Wait for Part 2 Principles of Statistics.

Remark 17. If n is large, this theorem allows us to implement a generalised likelihood
ratio test even if we cannot find the exact distribution of 2 log Λx. For n large, the size
of the test is ≈ α.

Example 5.12
In Example 5.8, Θ0 = {µ0}, Θ1 = R \ {µ0} we found 2 log Λx ∼ χ2

1.

If we take Θ1 = R then we have nested hypotheses, the GLR statistic doesn’t change,
so 2 log Λx ∼ χ2

1. dim Θ1 = 1 and dim Θ0 = 0 hence the difference in dimensions is 1.
Then, Wilks’ theorem implies that 2 log Λx is approximately distributed according
to χ2

1, although the result is exact in this particular case.

§5.8 Goodness of fit

Let X1, . . . , Xn be i.i.d. samples taking values in {1, . . . , k}. Let pi = P (X1 = i), and let
Ni be the number of samples equal to i, so ∑i pi = 1 and ∑i Ni = n. The parameters
here are p = (p1, . . . , pk), which has k − 1 dimensions. A goodness of fit test has a null
hypothesis of the form H0 : pi = p̃i for all i, for a fixed p̃ = (p̃1, . . . , p̃k). The alternative
hypothesis H1 does not constrain p.

The model is (N1, . . . , Nk) ∼ Multi(n; p1, . . . , pk). The likelihood function is

L(p) ∝ pN1
1 · · · pNk

k =⇒ ℓ(p) = constant +
∑

i

Ni log pi

The generalised likelihood ratio is

2 log Λx = 2
(

sup
p∈Θ1

ℓ(p) − sup
p∈Θ0

ℓ(p)
)

= 2(ℓ(p̂) − ℓ(p̃))

where p̂ is the maximum likelihood estimator under H1. To find p̂, we typically use the
method of Lagrange multipliers.

L(p, λ) =
∑

i

Ni log pi − λ
(∑

pi − 1
)
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We can compute that

p̂i = Ni

n

This is simply the fraction of observed samples of type i.

So

2 log Λx = 2(ℓ(p̂) − ℓ(p̃))

= 2
∑

i

Ni log Ni

np̃i

Wilks’ Theorem tells us that 2 log Λx ∼ χ2
p with p = dim Θ1 − dim Θ; = (k − 1) − 0 =

k − 1.

So we can reject H0 with size ≈ α when 2 log Λx > χ2
k−1(α).

Example 5.13
Mendel performed an experiment in which 556 different pea plants were created
from a small set of ancestors. Each descendent was either yellow or green, and
either wrinkled or smooth, giving four possibilities in total. The observed result was

N =

315︸︷︷︸
SG

, 108︸︷︷︸
SY

, 102︸︷︷︸
W G

, 31︸︷︷︸
W Y


Mendel’s theory gives a null hypothesis H0 : p = p̃ =

(
9
16 , 3

16 , 3
16 , 1

16

)
. Here,

2 log Λ = 0.618;
∑

i

(oi − ei)2

ei
= 0.604

These are referred to a χ2
3 distribution. We observe that χ2

3(0.05) = 7.815, so we
fail to reject the null hypothesis with a test of size 5%. We can compute that the
p-value is P

(
χ2

3 > 0.6
)

≈ 0.96, so there is a very high probability of observing a more
extreme value than observed.

§5.9 Pearson statistic

Let oi = Ni be the observed number of samples of type i, and ei = np̃i be the expected
value under the null hypothesis of the number of samples of type i. Here, we can write

2 log Λ = 2
∑

i

Ni log
(

Ni

np̃i

)
= 2

∑
i

oi log oi

ei
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Let δi = oi − ei. Then

2 log Λ = 2
∑

i

(ei + δi) log

1 + δi

ei︸︷︷︸
small when n large


By taking the Taylor expansion, we arrive at

= 2
∑

i

(ei + δi)
(

δi

ei
− δ2

i

2e2
i

+ . . .

)

= 2
∑

i

(
δi + δ2

i

ei
− δ2

i

2ei

)

Note that ∑i δi =
∑

i(oi − ei) = n − n = 0, so we can simplify and find

∑
i

δ2
i

ei
=
∑

i

(oi − ei)2

ei

This is Pearson’s χ2 statistic. This is also referred to a χ2
k−1 when performing a

hypothesis test.

Example 5.14
See Example 5.13.

§5.10 Goodness of fit for composite null

Suppose H0 : pi = pi(θ) for some θ ∈ Θ0, and H1 : p has any distribution on {1, . . . , k}.
We can compute

2 log Λ = 2
(

sup
p

ℓ(p) − sup
θ∈Θ

ℓ(p(θ))
)

We can sometimes compute these quantities explicitly, and hence find a test which refers
this test statistic to a χ2

d distribution where d = dim Θ1 − dim Θ0 = (k − 1) − dim Θ0.

Example 5.15
Consider a population of individuals who may have one of three genotypes, which
occur with probabilities (p1, p2, p3) = (θ2, 2θ(1 − θ), (1 − θ)2) for θ ∈ [0, 1]. In this
case, we can find the maximum likelihood estimator under the null hypothesis to be

θ̂ = 2N1 + N2
2n
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Hence,

2 log Λ = 2(ℓ(p̂) − ℓ(θ̂))

where p̂ is the mle in H1 whilst θ̂ is the mle in H0. Last time we found p̂i = Ni
n . This

can be computed explicitly and referred to a χ2
1 distribution. We can check that, in

this model,

2 log Λ =
∑

i

oi log oi

ei

where oi = Ni and ei = npi(θ̂). We can approximate this using the Pearson statistic,∑
i

(oi−ei)2

ei
. Each statistic can be referred to a χ2

d when n is large by Wilks’ Theorem,
where d = dim Θ1 − dim Θ0 = 2 − 1 = 1.

§5.11 Testing independence in contingency tables

Suppose we have observations (X1, Y1), . . . , (Xn, Yn) which are i.i.d., where the Xi take
values in 1, . . . , r and the Yi take values in 1, . . . , c. We wish to test whether the Xi and
Yi are independent. We will summarise this data into a sufficient statistic known as a
contingency table N , given by

Nij = |{ℓ : 1 ≤ ℓ ≤ n, (Xℓ, Yℓ) = (i, j)}|

So Nij is the number of samples of type (i, j).

Example 5.16 (Covid 19 Deaths)
Let Xi be the age group of ith death, Yi the week on which the ith death occurred.

Question
Are deaths decreasing faster for older age groups that had been vaccinated?

Suppose we observe n samples, and each sample has probability pij of being of
type (i, j). Flattening (Nij) into a vector, this has a multinomial distribution with
parameters (pij) (also flattened into a vector). The null hypothesis is the week of
death is independent of age (Xi independent of Yi for each sample). So H0 : pij =
P(Xℓ = i)P(Yℓ = j) = pi+p+j where pi+ =

∑
j pij and p+j =

∑
i pij . The alternative

hypothesis places no restrictions on the pij apart from that it sums to 1 and has
nonnegative entries. The generalised LRT:

2 log Λ =
∑
i,j

oij log oij

eij
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=
∑
i,j

Nij log Nij

np̂ij

where p̂ij is the mle under H0. These can be found using the method of Lagrange
multipliers. In particular,

p̂ij = p̂i+p̂+j ; p̂i+ = Ni+
n

= 1
n

c∑
j=1

Nij ; p̂+j = N+j

n
= 1

n

r∑
i=1

Nij

So

2 log Λ = 2
r∑

i=1

c∑
j=1

Nij log Nij

np̂i+p̂+j
≈
∑
i,j

(oij − eij)2

eij

By Wilks’ theorem, these test statistics have an approximate χ2
p distribution, where

p = dim Θ1 − dim Θ0 = (rc − 1) − (r − 1 + c − 1)a = (r − 1)(c − 1).
aWe have r − 1 degrees of freedom in (p1+, . . . , pr+) and c − 1 in (p+1, . . . , p+r)

The χ2 test for independence has a number of weaknesses.

1. The χ2 approximation requires n to be large. A reasonable heuristic is to require
Nij ≥ 5 for all i, j. If this is not possible, we can perform an exact test (which is
non-examinable).

2. The χ2 test often has a low power. Heuristically, this is because the alternative
space Θ1 is too large, and there are many possible models that lie in this space.
One solution is to define a parametric alternative H1 with fewer degrees of freedom
or lump categories in the table.

Remark 18. Note that this test also applies when n is a random variable with a Poisson
distribution. This is often the case when we do not fix the number of samples. The
proof is not provided in this course.

§5.12 Testing homogeneity in contingency tables

Instead of just assuming ∑ij Nij fixed, we also assume row totals are fixed.

Example 5.17
Suppose we perform a clinical trial on 150 patients, who are randomly assigned to
one of three groups of equal size. The first two sets take a drug with different doses,
and the third set takes a placebo.
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improved no difference worse
placebo 18 17 15 50

half dose 20 10 20 50
full dose 25 13 12 50

In the previous section, we fixed the total number of samples. Here, we fix the total
number of samples, and the total number of samples in each row. We suppose

Ni1, . . . , Nic ∼ Multinomial(ni+; pi1, . . . , pic)

which are independent for each row i of the table. The null hypothesis for homogen-
eity is that p1j = p2j = · · · = prj for all j. The alternative hypothesis assumes that
pi1, . . . , pic is any arbitrary probability vector for each row i. Under the alternative
hypothesis,

L(p) =
r∏

i=1

ni+!
Ni1! · · · Nic!

pNi1
i1 · · · pNic

ic .

Hence,

ℓ(p) = constant +
∑
i,j

Nij log pij

This is the same likelihood as the independence test above. To define the maximum
likelihood estimator we can again use the method of Lagrange multipliers with con-
straints ∑j pij = 1 for each i. We find

p̂ij = Nij

ni+

Under the null hypothesis, we let pj = pij for any i.

ℓ(p) = constant +
∑
i,j

Nij log pj =
∑

j

N+j log pj

We have the constraint ∑j pj = 1. Using the method of Lagrange multipliers,

p̂j = N+j

n++
; n++ =

∑
i

ni+.

Hence,

2 log Λ = 2
∑
i,j

Nij log p̂ij

p̂j
= 2

∑
i,j

Nij log Nij

ni+N+j/n++
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This is precisely the same test statistic as the test for independence above. The only
difference is that ni+ is fixed in this model. Further, if oij = Nij and eij = ni+p̂j =
ni+N+j

n++
, we have

2 log Λ = 2
∑
i,j

oij log oij

eij
≈
∑
i,j

(oij − eij)2

eij
.

By Wilks’ theorem, this is asymptotically a χ2
p distribution. Here,

p = dim Θ1 − dim Θ0 = r(c − 1) − (c − 1) = (r − 1)(c − 1)

This is again exactly the same as in the χ2 test for independence. Operationally,
the tests for homogeneity and independence are therefore completely identical; we
reject the null hypothesis for one test if and only if we reject the null for the other.
In the example above,

2 log Λ = 5.129;
∑
i,j

(oij − eij)2

eij
= 5.173

Referring this to a χ2
4 distribution, the upper 0.05-point is 9.488. Hence, we do not

reject the null hypothesis at the 5% significance level.

§5.13 Tests and confidence sets

Definition 5.16 (Acceptance Region)
The acceptance region A of a test is the complement of the critical region.

Theorem 5.2
Let X ∼ fX( · | θ) for some θ ∈ Θ.

1. Suppose that for each θ0 ∈ Θ, there exists a test of size α with acceptance
region A(θ0) for the null hypothesis θ = θ0. Then

I(X) = {θ : X ∈ A(θ)}a

is a 100(1 − α)% confidence set.

2. Now suppose there exists a set I(X) which is a 100(1 − α)% confidence set for
θ. Then

A(θ0) = {x : θ0 ∈ I(x)}
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is the acceptance region of a test of size α for the hypothesis θ = θ0.
aθ is fixed.

Proof. Observe that for both parts of the theorem,

θ0 ∈ I(X) ⇐⇒ X ∈ A(θ0) ⇐⇒ fail to reject H0 with data X.

For the first part, we want to show that Pθ0(θ0 ∈ I(X)) = 1−α. As θ0 ∈ I(X) ⇐⇒
X ∈ A(θ0), Pθ0(θ0 ∈ I(X)) = Pθ0(X ∈ A(θ0)) = 1 − α as Aθ0 is the acceptance
region of a size α test.

For the second part, we want to show that Pθ0(X /∈ A(θ0)) = α. As X ∈ A(θ0) ⇐⇒
θ0 ∈ I(X), Pθ0(X /∈ A(θ0)) = Pθ0(θ0 /∈ I(X)) = α as I(X) is a 100(1 − α)%
confidence set.

Example 5.18
Let X1, . . . , Xn ∼ N(µ, σ2

0) be i.i.d. with σ2
0 known and µ unknown. We found that

a 100(1 − α)% confidence interval for µ is

I(X) =
(

X ±
Zα/2σ0√

n

)
Hence, by the second part of the theorem above, we can find a test for H0 : µ = µ0
with size α by

A(µ0) = {x : µ0 ∈ I(x)} =
{

x : µ0 ∈
[
x ±

Zα/2σ0√
n

]}
This is equivalent to rejecting H0 when∣∣∣∣∣√n

µ0 − X

σ0

∣∣∣∣∣ > Zα/2

This is a two-sided test for normal location.
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§6 The normal linear model

§6.1 Multivariate normal distribution

Let X = (X1, . . . , Xn) be a vector of random variables. Then we define

E [X] =

E [X1]
...

E [Xn]

 ; Var (X) = Vij = E [(Xi − E [Xi])(Xj − E [Xj ])]

The familiar linearity results are

E [AX + b] = AE [X] + b; Var (AX + b) = A Var (X) AT

where A ∈ Rk×n, b ∈ Rk are constant.

Definition 6.1 (Multivariate Normal Distribution (MVN))
We say that X has a multivariate normal distribution if, for any fixed t ∈ Rn,
tT X is normal.

Proposition 6.1
Let X be multivariate normal. Then AX + b is multivariate normal, where A ∈
Rk×n, b ∈ Rk are constant.

Proof. Let t ∈ Rk. Then,

tT (Ax + b) = (AT t)T X︸ ︷︷ ︸
∼N(µ,σ2)

+tT b

which is the sum of a normal random variable and a constant. So this is N(µ +
tT b, σ2).

Proposition 6.2
A MVN is fully specified by its mean and covariance matrix.

Proof. Let X1, X2 be MVN with the same mean µ and the same covariance matrix
Σ. We will show that these two random variables have the same moment generating
function, and hence the same distribution.

MX1(t) = E
[
e1·tT X1

]
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Note that tT X1 is univariate normal. Hence, this is equal to

MX1(t) = exp
(

1 · E
[
tT X1

]
+ 1

2
Var

(
tT X1

)
· 12
)

= exp
(

tT µ + 1
2

tT Σt

)
This depends only on µ and Σ, and we obtain the same moment generating function
for X2.

§6.2 Orthogonal projections

Definition 6.2 (Orthogonal Projection)
A matrix P ∈ Rn×n is an orthogonal projection onto its column space col(P ) if,
for all v ∈ col(P ), we have Pv = v, and for all w ∈ col(P )⊥, we have Pw = 0.

Proposition 6.3
P is an orthogonal projection iff it is idempotent and symmetric.

Proof. (⇐=): Let v ∈ col(P ), so v = Pa for some a ∈ Rn. Then, Pv = PPa = Pa
as P idempotent.
Now, let w ∈ col(P )⊥. By definition, P T w = 0. By symmetry, Pw = 0.

( =⇒ ): Any vector a ∈ Rn can be uniquely written as a = v + w where v ∈ col(P )
and w ∈ col(P )⊥. Then PPa = PPv +PPw = Pv = P (v +w) = Pa. As this holds
for all a, we have that P is idempotent.
Let u1, u2 ∈ Rn, and note (Pu1) · ((I − P )u2) = 0, as Pu1 ∈ col(P ) and (I − P )u2 ∈
col(P )⊥. We have uT

1 P T (I −P )u2 = 0. Since this holds for all u1, u2, P T (I −P ) = 0
so P T = P T P . Note that P T P is symmetric, so P T is symmetric, and hence P is
symmetric.

Corollary 6.1
Let P be an orthogonal projection matrix. Then I − P is also an orthogonal projec-
tion matrix.

Proof. Clearly, if P is symmetric, so is I − P , so it suffices to prove idempotence.
We have (I − P )(I − P ) = I − 2P + P 2 = I − 2P + P = I − P as required.

Proposition 6.4
If P ∈ Rn×n is an orthogonal projection, then P = UUT a where the columns of U
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are an orthonormal basis for the column space of P .
aIf k = rank P then U ∈ Rn×k

Proof. First, we show that UUT is an orthogonal projection. This is clearly sym-
metric. It is idempotent: UUT UUT = UUT since UT U = I, as the columns of U
form an orthonormal basis for the column space of P .

Further, the column space of P is exactly the column space of UUT , so P = UUT .

Proposition 6.5
The rank of an orthogonal projection matrix is equal to its trace.

Proof. The rank is the dimension of the column space, which is rank P =
rank(UT U), UT U = Ik where k = rank P so rank(UT U) = k = tr

(
UT U

)
=

tr
(
UUT

)
= tr P .

Theorem 6.1
Let X be MVN, where X ∼ N(0, σ2I), and let P be an orthogonal projection. Then

1. PX ∼ N(0, σ2P ), (I −P )X ∼ N(0, σ2(I −P )) and these two random variables
are independent;

2. ‖P X‖2

σ2 ∼ χ2
rank P .

Proof. The vector (P, I − P )T X is multivariate normal, since it is a linear function
of X. This distribution is fully specified by its mean and variance.

E
[(

PX
(I − P )X

)]
=
(

P
I − P

)
E [X] = 0

Further,

Var
((

PX
(I − P )X

))
=
(

P
I − P

)
σ2I

(
P

I − P

)T

= σ2
(

P 2 P (I − P )
P (I − P ) (I − P )2

)
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= σ2
(

P 0
0 I − P

)
a

Now we must show that the variables PX, (I − P )X are independent. Let Z ∼
N(0, σ2P ), Z ′ ∼ N(0, σ2(I − P )) be independent. Then we can see that (Z, Z ′)T is
multivariate normal with

µ = 0; Σ = σ2
(

P 0
0 I − P

)

Hence (PX, (1 − P )X)T is equal in distribution to (Z, Z ′)T . So PX is independent
of (I − P )X.

We must show that ‖P X‖2

σ2 ∼ χ2
rank P . Note that

‖PX‖2

σ2 = XT P T PX

σ2 =
XT

(
UUT

)T
UUT X

σ2 = XT UUT X

σ2

The columns of U form an orthogonal basis of the columns of P so

‖PX‖2

σ2 =

∥∥∥UT X
∥∥∥2

σ2

=
rank P∑

i=1

(UT X)2
i

σ2 .

Note, UT X ∼ N(0, σ2UT U) = N(0, σ2Irank P ).

Var
(
UT X

)
= UT Var (X) U

= σ2UT U

= σ2I.

So

(UT X)i

σ
iid∼ N(0, 1)

for i = 1, . . . , rank P . Hence

‖PX‖2

σ2 =
rank P∑

i=1

(
(UT X)i

σ

)2

∼ χ2
rank P
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aP (I − P ) = P − P 2 = P − P = 0 as P idemptotent.

Theorem 6.2
Let X1, . . . , Xn

iid∼ N(µ, σ2) for some unknown µ ∈ R and σ2 > 0. The maximum
likelihood estimators for µ and σ are

µ̂ = X = 1
n

∑
i

Xi; σ̂2 = Sxx

n
=
∑

i

(
Xi − X

)2

n

Further,

1. X ∼ N
(
µ, σ2

n

)
;

2. Sxx
σ2 ∼ χ2

n−1;

3. X, Sxx are independent.

Proof. We have proved the first statement before.

Let P be the square n×n matrix with all entries 1
n . This is an orthogonal projection

matrix, as it is symmetric and idempotent. Note that

PX =

X
...

X


We will write the observations X as

X =

µ
...
µ


︸ ︷︷ ︸

M

+ε; ε ∼ N(0, σ2I)

Note that X is a function of Pε, since X = (PX)1 = (PM + Pε)1. Further,

Sxx =
∑

i

(
Xi − X

)2
= ‖X − PX‖2 = ‖(I − P )X‖2 = ‖(I − P )ε‖2

Hence Sxx is a function of (I − P )ε. By the previous theorem, Pε and (I − P )ε are
independent, so X and Sxx are independent.
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Since I − P is a projection with rank equal to its trace n − 1, we apply the previous
theorem to obtain

Sxx

σ2 = ‖(I − P )ε‖2

σ2 = χ2
n−1

§6.3 Linear model

Suppose we have data in pairs (x1, Y1), . . . , (xn, Yn), where Yi ∈ R, xi ∈ Rp. The Yi

are known as the response variables, or the dependent variables. The xi1, xip are the
predictors, or independent variables. We will model the expectation of the response
Yi as a linear function of the predictors (xi1, . . . , xip).

Example 6.1
Let Yi be the number of insurance claims that driver i makes in a given year, and
xi1, . . . , xip is a set of variables about the specific driver. Predictors include age,
the number of years they have held their license, and the number of points on their
license, for instance.

We assume that
Yi = α + β1xi1 + · · · + βpxip + εi

where α ∈ R is an intercept, βi are the coefficients, and ε is a noise vector, which
is a random variable. The intercept and coefficients are the parameters of interest.

Remark 19. 1. We will often eliminate the intercept by making one of the predictors
xi1 = 1 for all i, so β1 plays the role of the intercept.

2. Note that we can use a linear model to model nonlinear relationships. For example,
suppose Yi = a + bzi + cz2

i + εi. We can rephrase this as a linear model with
xi = (1, zi, z2

i ).

3. The coefficient βj can be interpreted as the effect on Yi of increasing xij by one,
while keeping all other predictors fixed. This cannot be interpreted as a causal
relationship in general.

§6.4 Matrix formulation

Let

Y =

Y1
...

Yn

 ; X =

x11 · · · x1p
... . . . ...

xn1 · · · xnp

 ; β =

β1
...

βp

 ; ε =

ε1
...

εn


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We call X the design matrix. The linear model is that

Y = Xβ + ε

Xβ is considered fixed. Since ε is random, this makes Y into a random variable.

§6.5 Assumptions

We make a number of moment assumptions on the noise vector ε. This allows us to
deduce more results about the linear model.

1. E [ε] = 0 =⇒ E [Yi] = xT
i β;

2. Var (ε) = σ2I, which is equivalent to both Var (ε)i = σ2 and Cov εi, εj = 0 for all
i 6= j. This property is known as homoscedasticity.

We will always assume that the design matrix X has full rank p, or equivalently, that it
has linearly independent columns. Since X ∈ Rn×p, this requires that n ≥ p, so we need
at least as many samples as we have predictors.

§6.6 Least squares estimation

Definition 6.3 (Least Squares Estimator)
The least squares estimator β̂ minimises the residual sum of squares, which
is

S(β) = ‖Y − Xβ‖2 =
∑

i

(
Yi − xT

i β
)2

The term Yi − xT
i β is called the ith residual.

Since S(β) is a positive definite quadratic in β, it is minimised at the stationary point.

∂S(β)
∂βk

∣∣∣∣
β=β̂

= 0 ⇐⇒ ∀k, −2
n∑

i=1
xik

(
Yi −

∑
k

xij β̂j

)
= 0 ⇐⇒ XT Xβ̂ = XT Y

As X has full column rank, XT X ∈ Rp×p is invertible.

β̂ = (XT X)−1XT Y

This is notably a linear function of Y , given fixed X. Note that

E
[
β̂
]

= (XT X)−1XTE [Y ] = (XT X)−1XT Xβ = β
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So β̂ is an unbiased estimator. Further,

Var
(
β̂
)

= (XT X)−1XT Var (Y )
[
(XT X)−1XT

]T
= (XT X)−1XT σ2I

[
(XT X)−1XT

]T
= σ2(XT X)−1

Theorem 6.3 (Gauss-Markov theorem)
Let an estimator β⋆ of β be unbiased and a linear function of Y , so β⋆ = CY . Then,
for any fixed t ∈ Rp, we have

Var
(
tT β̂

)
≤ Var

(
tT β⋆

)
where β̂ is the least squares estimator. We say that β̂ is the best linear unbiased
estimator (BLUE).

Remark 20. We can think of t ∈ Rp as a vector of predictors for a new sample. Then
tT β̂ is the prediction for E [Yi] for this new sample, using the least squares estimator.
tT β⋆ is the prediction with β⋆. In both cases, the prediction is unbiased.

Proof. Note that

Var
(
tT β⋆

)
− Var

(
tT β̂

)
= tT

[
Var (β⋆) − Var

(
β̂
)]

t

To prove that this quantity is always non-negative, we must show that Var (β⋆) −
Var

(
β̂
)

is positive semidefinite. Recall β⋆ = CY, β̂ = (XT X)−1XT Y so let A =

C − (XT X)−1XT . Note that E [AY ] = E [β⋆] −E
[
β̂
]

= 0. Also, E [AY ] = AE [Y ] =
AXβ. This holds for all β, so AX = 0. Now, since XT X is symmetric,

Var (β⋆) = Var (CY )

= Var
(
(A + (XT X)−1XT )Y

)
=
[
A + (XT X)−1XT

]
Var (Y )

[
A + (XT X)−1XT

]T
=
[
A + (XT X)−1XT

]
σ2I

[
A + (XT X)−1XT

]T
= σ2

AAT + (XT X)−1 + AX(XT X)−1 + (XT X)−1XT AT

AX=0


= σ2AAT + Var

(
β̂
)

Var (β⋆) − Var
(
β̂
)

= σ2AAT
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Note that the outer product AAT is always positive semidefinite.

§6.7 Fitted values and residuals

Definition 6.4
The fitted values are Ŷ = Xβ̂ = X(XT X)−1XT Y , where P = X(XT X)−1XT is
the hat matrix. The residuals are Y − Ŷ = (I − P )Y .

Proposition 6.6
P is the orthogonal projection onto the column space of the design matrix.

Proof. P is clearly symmetric. P is idempotent:

P 2 = X(XT X)−1XT X(XT X)−1XT

= P.

Therefore P is an orthogonal projection. We need to show column space of P is the
column space of X.

If v is in the column space of X, then v = Xb for some b. Hence

col(P ) 3 Pv = X(XT X)−1XT Xb = Xb = v

For any a

Pa = X(XT X)−1XT a ∈ col(X).

Corollary 6.2
The fitted values are an orthogonal projection of Y to the column space of X. The
residuals are orthogonal to the column space, they are a projection of Y onto the
orthogonal of the column space of X.

§6.8 Normal linear model

The normal linear model is a linear model under the assumption that ε ∼ N(0, σ2I),
where σ2 is unknown. The parameters in the model are now (β, σ2). The likelihood
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function in the normal linear model is

L(β, σ2) = fY (y | β, σ2) = (2πσ2)− n
2 exp

{
− 1

2σ2

∑
i

(Yi − xT
i β)2

}

The log-likelihood is

ℓ(β, σ2) = constant − n

2
log σ2 − 1

2σ2 ‖Y − Xβ‖2

To maximise this as a function of β for any fixed σ2, we must minimise the residual
sum of squares S(β) = ‖Y − Xβ‖2. So β̂ = (XT X)−1XT Y is the maximum likelihood
estimator of β. Further, σ̂2 = n−1

∥∥∥Y − Xβ̂
∥∥∥2

= n−1
∥∥∥Ŷ − Y

∥∥∥2
= n−1‖(I − P )Y ‖2.

Theorem 6.4
In the normal linear model,

1. β̂ ∼ N(β, σ2(XT X)−1);

2. n σ̂2

σ2 ∼ χ2
n−p;

3. β̂, σ̂2 are independent.

Proof. We prove each part separately.

1. We already know that E
[
β̂
]

= β, and Var
(
β̂
)

= σ2(XT X)−1. So it suffices
to show that β̂ is a MVN. Since β̂ = (XT X)−1XT Y , it is a linear function of
Y which is a MVN, so β̂ is a MVN.

2. Observe that

n
σ̂2

σ2 = ‖(I − P )Y ‖2

σ2 = ‖(I − P )(Xβ + ε)‖2

σ2

55



Since (I − P )X = 0 as P is the orthogonal projection onto the column space
of X,

n
σ̂2

σ2 = ‖(I − P )ε‖2

σ2 ∼ χ2
tr(I−P )

a

where tr(I − P ) = tr I − tr P = n − p since X ∈ Rn×p is assumed to have full
rank.

3. Note that σ̂2 is a function of (I − P )ε, and

β̂ = (XT X)−1XT Y

= (XT X)−1XT (Xβ + ε)
= β + (XT X)−1XT ε

= β + (XT X)−1XT Pεb

is a function of Pε. Since (I − P )ε and Pε are independent by Theorem 6.1,
so are β̂, σ̂2.

aBy Theorem 6.1
bXT P = XT as P acts as the identity in the column space of X.

Corollary 6.3
σ̂2 is biased, but asymptotically unbiased.

Proof.

E
[

nσ̂2

σ2

]
= E

[
χ2

n−p

]
= n − p =⇒ E

[
σ̂2
]

= σ2 · n − p

n
< σ2

§6.9 Inference

Definition 6.5 (t-distribution)
Let U ∼ N(0, 1) and V ∼ χ2

n be independent random variables. Then

T = U√
V
n

has a tn-distribution.
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As n → ∞, this approaches the standard normal distribution.

Definition 6.6 (F -distribution)
Let V ∼ χ2

n and W ∼ χ2
m be independent random variables. Then

F = V/n

W/m

has an Fn,m-distribution.

Example 6.2
We consider a 100(1 − α)% confidence interval for one of the coefficients β in the
normal linear model Y = Xβ + ε. Without loss of generality, we will consider β1.

We begin by finding a pivot, which is a distribution that does not depend on the
parameters of the model. By standardising the above form of β̂,

β1 − β̂1√
σ2(XT X)−1

11

∼ N(0, 1)

where M−1
11 is the top left entry in the matrix M−1. This random variable is inde-

pendent from nσ̂2

σ2 ∼ χ2
n−p. Now, to construct a pivot, we find

β1−β̂1√
σ2(XT X)−1

11√
σ̂2

σ2 · n
n−p

∼ U√
V
n

∼ tn−p

The σ2 terms cancel, so the statistic is a function only of β1 and functions of the
data. Then,

Pβ,σ2

−tn−p

(
α

2

)
≤ β̂1 − β1√

(XT X)−1
11

√
n − p

nσ̂2 ≤ tn−p

(
α

2

) = 1 − α

since the t distribution is symmetric about zero. Rearranging to find an interval for
β1,

Pβ,σ2

β̂1 − tn−p

(
α

2

)√(XT X)−1
11 σ̂2√

(n − p)/n
≤ β1 ≤ β̂1 + tn−p

(
α

2

)√(XT X)−1
11 σ̂2√

(n − p)/n

 = 1 − α
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Hence,

I =

β̂1 ± tn−p

(
α

2

)√(XT X)−1
11 σ̂2√

(n − p)/n


is a 100(1 − α)% confidence interval for β1.

Consider a test for H0 : β1 = β⋆, H1 : β1 6= β⋆. By connecting tests and confidence
intervals, we can test H0 with size α by rejecting this null hypothesis when β⋆ is not
contained within the confidence interval I for β1.

Consider a special case where Y1, . . . , Yn
iid∼ N(µ, σ2) where µ, σ2 are unknown, and

we want to infer results about µ. Note that this is a special case of the normal linear
model where

X =

1
...
1

 ; β =
(
µ
)

So we can infer a confidence interval for µ using the above statistic.

Example 6.3
Consider a 100(1 − α)% confidence set for β as a whole. Note that

β̂ − β ∼ N(0, σ2(XT X)−1)

As X has full rank, XT X is positive definite. So it has eigendecomposition XT X =
UDUT where Dii > 0 and D diagonal. We define

(XT X)α = UDαUT

Then,

(XT X)1/2(β̂ − β) ∼ N(0, σ2(XT X)1/2(XT X)−1(XT X)1/2) ∼ N(0, σ2I).

Hence, ∥∥∥(XT X)1/2(β̂ − β)
∥∥∥2

σ2 ∼ χ2
p
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as this is the sum of p standard normals. We can also write this as∥∥∥(XT X)1/2(β̂ − β)
∥∥∥2

σ2 =

∥∥∥X(β̂ − β)
∥∥∥2

σ2

Since this is a function of β̂, this is independent of any function of σ̂2. In particular,
it is independent of nσ̂2

σ2 ∼ χ2
n−p. Thus, we can form a pivot by∥∥∥X(β̂ − β)
∥∥∥2

/(σ2p)
σ̂2n/(σ2(n − p))

∼
χ2

p/p

χ2
n−p/(n − p)

∼ Fp,n−p

This does not depend on σ2. For all β, σ2,

Pβ,σ2


∥∥∥X(β̂ − β)

∥∥∥2
/p

σ̂2n/(n − p)
≤ Fp,n−p(α)

 = 1 − α

because the F distribution has support only on the positive real line. It is nontrivial
to express this as a region for β since it is vector-valued. We can say, however, thatβ′ ∈ Rp :

∥∥∥X(β̂ − β)
∥∥∥2

/p

σ̂2n/(n − p)
≤ Fp,n−p(α)


is a 100(1 − α)% confidence set for β.

This set is an ellipsoid centred at β̂. The shape of the ellipsoid depends on the design
matrix X; the principal axes are given by eigenvectors of XT X.

The above two results are exact; no approximations were made.

§6.10 F-tests

We wish to test whether a collection of predictors βi are equal to zero. Without loss of
generality, we will take the first p0 ≤ p predictors. We have H0 : β1 = · · · = βp0 = 0,
and H1 = β ∈ Rp. We denote X = (X0, X1) as a block matrix with X0 ∈ Rn×p0 and
X1 ∈ Rn×(p−p0), and we denote β = (β0, β1)T similarly. The null model has β0 = 0.
This is a linear model Y = Xβ + ε = X1β1 + ε. We will write P = X(XT X)−1XT and
P1 = X1(XT

1 X1)−1XT
1 . Note that as X and P have full rank, so must X1, P1.

Lemma 6.1
(I − P )(P − P1) = 0, and P − P1 is an orthogonal projection with rank p0.
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Proof. P − P1 is symmetric since P and P1 are symmetric. It is also idempotent,
since

(P − P1)(P − P1) = P 2 − P1P − PP1 + P 2
1 = P − P1 − P1 + P1 = P − P1

since P1 projects onto the column space of X1 so P1P = P1. Hence P − P1 is
indeed an orthogonal projection matrix. The rank is rank(P − P1) = tr(P − P1) =
tr P − tr P1 = p − (p − p0) = p0. Also,

(I − P )(P − P1) = P − P1 − P + PP1 = P − P1 − P + P1 = 0

Recall that the maximum log-likelihood in the normal linear model is given by

ℓ(β̂, σ̂2) = −n

2
log σ̂2 − n

2
· constant = −n

2
log ‖(I − P )Y ‖2

n
+ constant

The generalised likelihood ratio statistic is

2 log Λ = 2
(

sup
β∈Rp,σ2>0

ℓ(β, σ2) − sup
β0=0,β1∈Rp−p0 ,σ2>0

ℓ(β, σ2)
)

= n

[
− log ‖(I − P )Y ‖2

n
+ log ‖(I − P1)Y ‖2

n

]

Wilks’ theorem applies here, showing that 2 log Λ ∼ χ2
p0 asymptotically as n → ∞ with

p, p0 fixed. However, we can find an exact test, so using Wilks’ theorem will not be
necessary. 2 log Λ is monotone in

‖(I − P1)Y ‖2

‖(I − P )Y ‖2 = ‖(I − P + P − P1)Y ‖2

‖(I − P )Y ‖2

= ‖(I − P )Y ‖2 + ‖(P − P1)Y ‖2 + 2Y T (I − P )(P − P1)Y
‖(I − P )Y ‖2

= ‖(I − P )Y ‖2 + ‖(P − P1)Y ‖2

‖(I − P )Y ‖2

= 1 + ‖(P − P1)Y ‖2

‖(I − P )Y ‖2

The generalised likelihood ratio test rejects when the F -statistic

F = ‖(P − P1)Y ‖2

‖(I − P )Y ‖2 · 1/p0
1/(n − p)

is large.
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Theorem 6.5
Under H0 : β1 = · · · = βp0 = 0, in the normal linear model,

F = ‖(P − P1)Y ‖2

‖(I − P )Y ‖2 · 1/p0
1/(n − p)

∼ Fp0,n−p

Proof. Recall that

‖(I − P )Y ‖2 = ‖(I − P )ε‖2 ∼ χ2
n−p · σ2

Therefore it suffices to show that ‖(P − P1)Y ‖2 is an independent χ2
p0 · σ2 random

variable. Under H0, we have that

(P − P1)Y = (P − P1)(Xβ + ε) = (P − P1)(X1β1 + ε) = (P − P1)ε

since P, P1 preserve X1. Hence, ‖(P − P1)Y ‖2 = ‖(P − P1)ε‖2 ∼ χ2
rank(P −P1) · σ2 =

χ2
p0 · σ2.

We must now show independence between (I − P )Y and (P − P1)Y . The vectors
(I − P )ε, (P − P1)ε are independent; indeed,

E =
(

(I − P )ε
(P − P1)ε

)

is a multivariate normal vector, and

E [E] = 0; Var (E) =
(

I − P (I − P )(P − P1)
(I − P )(P − P1) P − P1

)
=
(

I − P 0
0 P − P1

)

and since (I − P )ε and (P − P1)ε are elements of a multivariate normal vector and
are uncorrelated, they are independent as required.

The generalised likelihood ratio test of size α rejects H0 when F > F −1
p0,n−p(α). This is an

exact test for all n, p, p0. Previously, we found a test for H0 : β1 = 0 against H1 : β1 6= 0.
This is a special case of the F -test derived above, where p0 = 1. The previous test of
size α rejects H0 when

∣∣∣β̂∣∣∣ > tn−p

(
α

2

)√
σ̂2n(XT X)−1

11
n − p

Lemma 6.2
This test is equivalent to the F -test with p0 = 1.
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This proof was left as an exercise to the reader.

Proof. We will show that these two tests are equivalent; they reject H0 in the same
critical region. The t-test rejects if and only if

β̂2
1 > tn−p

(
α

2

)2 σ̂2n(XT X)−1
11

n − p

Note that tn−p
(

α
2
)2 = F1,n−p(α), since

U ∼ N(0, 1); W sin χ2
n =⇒ T = U√

W/n
=⇒ T 2 = U2

W/n
= V/1

W/n
∼ F1,n

where V ∼ χ2
1. Hence,

β̂1/(XT X)−1
11

σ̂2n/(n − p)
> F1,n−p(α)

It suffices to show that

β̂1

(XT X)−1
11

= ‖(P − P1)Y ‖2

p0︸︷︷︸
=1

; σ̂2n

n − p
= ‖(I − P )Y ‖2

n − p

We have already shown the latter part. For β̂1, note that in this case, P − P1 is
a projection of rank 1 onto the one-dimensional subspace spanned by the vector
v = (I − P )X0 where X0 is the first column in the matrix X. First, note the
following identity.

XT
0 (I − P1) = vT = vT (P − P1) = XT

0 (I − P1)(P − P1) = XT
0 (I − P1)P

Then,

‖(P − P1)Y ‖2 =
∥∥∥∥∥ v

‖v‖

(
v

‖v‖

)T

Y

∥∥∥∥∥
2

= (vT Y )2

‖v‖2 = (XT
0 (I − P1)Y )2

‖(I − P1)X0‖2

= (XT
0 (I − P1)PY )2

‖(I − P1)X0‖2

= (XT
0 (I − P1)Xβ̂)2

‖(I − P1)X0‖2
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Note that (I − P1)X = [(I − P1)X0, 0, . . . , 0]. Hence,

‖(P − P1)Y ‖2 = ‖(I − P1)X0‖4β̂1

‖(I − P1)X0‖2

= ‖(I − P1)X0‖2β̂1

Finally, we show that

(XT X)−1
11 = 1

‖(I − P1)X0‖2

using the Woodbury identity for blockwise matrix inversion. Hence,

β̂2
1

(XT X)−1
11

= ‖(P − P1)Y ‖2

as required.

§6.11 Analysis of variance

Suppose we have categorical predictors.

Example 6.4
Let Yi ∈ R be the clinical response. zi ∈ {control, treatment 1, treatment 2}, this
is categorical. Let xij = 1zi=j , i.e. is subject i was in group j. xi ∈ R3 so it is
numerical.

Say our model is Yi = α + β1xi,1 + β2xi,2 + β3xi,3
a. In this case,

X =



1 1 0 0
1 1 0 0
...

...
...

...
1 0 1 0
1 0 1 0
...

...
...

...
1 0 0 1
1 0 0 1


.

This has rank 3 < 4 so to deal with this we add a corner point constraint. This is
where we call one of the groups the “baseline” and remove it from the linear model.
In this case we set β1 = 0, removing the second column from X.

The interpretation of βj depends on the baseline, βj is the the effect of being in
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group j relative to the baseline.

However col(X) and the matrix P are insensitive to the choice of baseline. Therefore
so are the fitted values, Ŷ = PY .

This can be extended to a model with more than 1 categorical predictor e.g. treat-
ment group and gender.

aI think Yij = α + βjxij + εij where εij ∼ N (0, σ2) independent.

Definition 6.7 (Analysis of Variance (ANOVA))
The analysis of variance (ANOVA) test on the linear model

Yij = α + βjxij + εij

where β1 = 0 is given by

H0 : β2 = β3 = · · · = 0, α 6= 0; H1 : β2, β3, . . . , α ∈ R

In particular, H0 gives E [Yij ] = α.

In our example, H0 : β2 = β3 = 0, α 6= 0 and H1 : β2, β3, α ∈ R. This is a special case of
the F -test, since we are testing whether the coefficients βi are equal to zero.

X =



1 0 0
1 0 0
...

...
...

1 1 0
1 1 0
...

...
...

1 0 1
1 0 1


=
(
X1 X0

)

The first column of X, denoted X1, represents α, and the other columns, denoted X0,
represent µ2, µ3. X0 is eliminated under the null hypothesis.

Note that X has 3N rows, where each block of N consecutive rows is identical. Recall
that the F -test uses the test statistic

F = ‖(P − P1)Y ‖2

‖(I − P )Y ‖2 · 1/p0
1/(n − p)

∼ Fp0,n−p
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For this test, P projects onto the space of vectors in R3N which are constant over
treatment groups. In other words, let

Y j = 1
N

N∑
i=1

Yij

Then,

PY =

Y 1, . . . , Y 1︸ ︷︷ ︸
N entries

, Y 2, . . . , Y 2︸ ︷︷ ︸
N entries

, Y 3, . . . , Y 3︸ ︷︷ ︸
N entries

T

P1 projects onto the subspace of constant vectors in R3N , i.e. P1 = 1
N 11T so

Y = 1
3N

N∑
i=1

3∑
j=1

Yij =⇒ P1Y =

Y , . . . , Y︸ ︷︷ ︸
3N entries

T

Hence, we can write the F statistic as

F =
∑3

j=1 N
(
Y j − Y

)2
/2∑N

i=1
∑3

j=1

(
Yij − Y j

)2
/(3N − 3)

We can generalise this to the case where there are J > 3 treatment groups:

F =
∑J

j=1 N
(
Y j − Y

)2
/(J − 1)∑N

i=1
∑J

j=1

(
Yij − Y j

)2
/(JN − J)

= variance between treatments
variance within treatments

Remark 21. This test is sometimes called one-way analysis of variance. Two-way analysis
of variance is a similar analysis in an experiment where groups are defined according to
two variables. For instance, the response could be a student’s performance in an exam,
where the treatments are

1. completion of supervisions (zero representing not complete, one representing com-
plete); and

2. whether a monetary incentive was given (zero representing no incentive, one rep-
resenting an incentive).

Here, we would have the result Yijk as the number of marks of student i in group (j, k).
The model would be

Yijk = α + µj + λk + εijk

with a constraint without loss of generality that µ0 = λ0 = 0. The two-way analysis of
variance test is then

H0 : µ1 = λ1 = 0; H1 : µ1, λ1 ∈ R
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§6.12 Simple linear regression - Non Examinable

In a linear regression model, we often centre predictors to simplify certain expressions.

Yi = α + β(x − x) + εi

where x = 1
n

∑n
i=1 xi, and the εi independently have the usual N(0, σ2) distribution. In

this case, the maximum likelihood estimator (α̂, β̂) takes a simple form. Recall that
(α̂, β̂) minimises

S(α, β) =
n∑

i=1
(Yi − α − β(xi − x))2

Hence,

∂S(α, β)
∂α

=
n∑

i=1
−2(Yi − α − β(xi − x)) =

n∑
i=1

−2(Yi − α)

This gives the simple expression

α =
∑n

i=1 Yi

n
= Y

Now,

∂S(α, β)
∂β

∣∣∣∣
α=α̂

=
n∑

i=1
−2
(
Yi − Y − β(xi − x)

)
(xi − x)

This vanishes when

β̂ =
∑n

i=1

(
Yi − Y

)
(xi − x)∑n

i=1(xi − x)2 = Sxy

Sxx

Note that Sxy

n is the sample covariance of X and Y , and Sxx
n is the sample variance of

X.
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